6.3 Worksheet

1. (6.3) A building owner contracts with a local construction company to build a brick patio in a triangular courtyard. The three sides of the courtyard measure $45 \mathrm{ft}, 55 \mathrm{ft} 6 \mathrm{in}$, and 32 ft 5 in . The construction company charges $\$ 16.20$ per square foot for materials and installation. Find the cost of the patio to the nearest hundred dollars

$$
\begin{aligned}
S & =\frac{45+55.5+32.416}{2} \\
& =66.458
\end{aligned}
$$

$$
\begin{aligned}
A & =\sqrt{66.458(66.458-45)(66.458-55.5)(66.458-32.416)} \\
& =\sqrt{66.458(21.458)(10.958)(34.042)} \\
& =\sqrt{531,964.77} \\
& =729.3592 \\
\text { total cost } & =(\$ 16.20)(729.3592) \\
& =\$ 11.815 .62 \\
& \approx \$ 11.800
\end{aligned}
$$

2. (6.3) A plot of land has been surveyed, with the resulting information shown in the figure below. If $\overline{A B}=330 \mathrm{ft}$ find the area of the plot.

$$
\begin{aligned}
& \frac{\sin \left(50^{\circ}\right)}{330}=\frac{\sin \left(35^{\circ}+23^{\circ}\right)}{B D} \\
\Rightarrow & B D=\frac{330 \sin \left(58^{\circ}\right)}{\sin \left(50^{\circ}\right)}=\frac{365.3}{C} \\
A & \frac{123^{\circ}}{330} \\
\Rightarrow & \frac{\sin (23)}{B C}=\frac{\sin \left(20^{\circ}\right)}{330} \\
\Rightarrow & B C=\frac{330 \sin (23)}{\sin \left(20^{\circ}\right)}=377
\end{aligned}
$$

$$
\begin{array}{ll}
A \triangle D B A & \text { sind the areas } \\
=\frac{1}{2}(330)(365.3)\left(\sin 72^{\circ}\right) & \text { sf these two } \\
=57,324.456 & \text { bigtriang } \\
A \triangle D B C & \text { is ane } \\
=\frac{1}{2}(365.3)(377)\left(\sin 65^{\circ}\right) & \text { strategy } \\
=62,407.4932 & \\
\Rightarrow A=57324.456+62,407.4932=119,731.9 \mathrm{ft}^{2}
\end{array}
$$

$$
\begin{aligned}
& \frac{\sin (23)}{B C}=\frac{\sin \left(20^{\circ}\right)}{330} \\
& \Rightarrow B C=\frac{330 \sin (23)}{\sin \left(20^{\circ}\right)}=377 \\
& \begin{array}{lc}
=57,324.456 & \text { bigtriang } \\
A \triangle D B C & \text { is ane } \\
=\frac{1}{2}(365.3)(377)\left(\sin 65^{\circ}\right) & \text { strategy } \\
=62,407.4932 & \\
\Rightarrow A=57324.456+62,407.4932 & =119,731.9 \mathrm{ft}^{2}
\end{array} \\
& \begin{array}{ll}
=57,324.456 & \text { big triang } \\
A \triangle D B C & \text { is ane } \\
=\frac{1}{2}(365.3)(377)\left(\sin 65^{\circ}\right) & \text { strategy } \\
=62,407.4932 & \\
\Rightarrow A=57324.456+62,407.4932 & =119,731.9 \mathrm{ft}^{2}
\end{array} \\
& \begin{array}{lc}
=57,324.456 & \text { bigtriang } \\
A \triangle D B C & \text { is ane } \\
=\frac{1}{2}(365.3)(377)\left(\sin 65^{\circ}\right) & \text { strategy } \\
=62,407.4932 & \\
\Rightarrow A=57324.456+62,407.4932 & =119,731.9 \mathrm{ft}^{2}
\end{array} \\
& \begin{array}{lc}
=57,324.456 & \text { bigtriang } \\
A \triangle D B C & \text { is ane } \\
=\frac{1}{2}(365.3)(377)\left(\sin 65^{\circ}\right) & \text { strategy } \\
=62,407.4932 & \\
\Rightarrow A=57324.456+62,407.4932 & =119,731.9 \mathrm{ft}^{2}
\end{array}
\end{aligned}
$$

3. (6.3) A four-sided plot of land, shown in the figure, occupies the cul-de-sac in a new development. The land in the rest of the development has sold for $\$ 4.90$ per square foot. Suppose $\alpha=99.3^{\circ}, \theta=73.2^{\circ}, a=113 \mathrm{ft}, b=42.0 \mathrm{ft}, c=126 \mathrm{ft}$, and $d=120 \mathrm{ft}$. Find the price of this plot to the nearest thousand dollars. (Hint: Draw a diagonal that divides the plot into two triangles.)

$$
\begin{aligned}
A & =\frac{1}{2}(113)(120) \sin \left(73.2^{\circ}\right) \\
& =6490.62619 \quad \tau_{\text {included angle }}
\end{aligned}
$$

T_{1}

$$
\begin{aligned}
A & =\frac{1}{2}(42)(126) \sin \left(99.3^{\circ}\right) \\
& =2611.22022 \quad r_{\text {included angle }}
\end{aligned}
$$

area of figure is area of $T_{1}+T_{2}$

$$
\begin{aligned}
A= & 6490.62619 \\
& +2611.22022 \\
= & 9101.8464
\end{aligned}
$$

$\Rightarrow A \times \$ 4.90 \approx \$ 45,000$
4. (6.3) A gardener is building four triangular wildflower beds along one wall of a museum. The triangles will be equilateral with side length 9 ft 3 in . The wildflower seeds are to be spread at a rate of one packet for each $15 s q . f t$. How many packets with the gardener need. (Round your answer to the nearest integer)

$$
\begin{aligned}
A & =\frac{1}{2}(9.25)(9.25) \sin \left(60^{\circ}\right) \\
& =37.0496 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
4 A & =4(37.0496) \\
& =148.1986 \mathrm{ft}^{2}
\end{aligned}
$$

τ area of all four wildflower beds

$$
\frac{148.1986}{15}=9.88
$$

