Factorization in Polynomial Rings with Zero Divisors

Ranthony A.C. Edmonds Ross Assistant Professor The Ohio State University

7th Midwestern Women in Mathematics Symposium University of Iowa: Iowa City, IA April 13, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Goal

How do certain factorization properties of a commutative ring R behave under the polynomial extension R[X]?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Unique Factorization

Fundamental Theorem of Arithmetic (FTA) every integer can be factored uniquely into the product of primes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Unique Factorization

Unique Factorization Domain

every element can be factored uniquely into the product of atoms

Example

Rings with the Unique Factorization Property

► Z/4Z

In $\mathbb{Z}/4\mathbb{Z}$, $2 \cdot 2 = 0$ so 2 is called a **zero divisor**

 $\underline{Note:}$ a domain is a commutative ring with where 0 is the only zero divisor

- ロ ト - 4 回 ト - 4 □

Non-Unique Factorization

Consider the ring: $\mathbb{R} + X\mathbb{C}[X]$

<u>in</u>

<u></u>	
► $\sqrt{3} + X(2iX^3 + 7X + i)$	$\mathbb{R} + X\mathbb{C}[X]$
► X	$X^2 = X \cdot X$
$\blacktriangleright \left(\frac{1+i}{2}\right)X$	= (iX)(-iX)
out	$=(1+i)X\left(rac{1-i}{2} ight)X$
► 3i	$= (2+i)X\left(\frac{2-i}{5}\right)X$
► 1 + <i>i</i>	

 X^2 is divisible by $\{(r+i)X\}$

Factorization of X^2 in

half-factorial ring: every factorization of a nonzero nonunit element into atoms has the same length

Non-Unique Factorization

finite factorization ring: every nonzero nonunit has only a finite number of factorizations into atoms

Example

Examples of FFRs

any UFR

▶ some HFRs,
$$\mathbb{Z}\sqrt{-5} = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\};$$

$$6 = 3 \cdot 2 = (1 - \sqrt{-5})(1 + \sqrt{-5})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\blacktriangleright \mathbb{R}[X^2, X^3]$ $X^6 = X^3 \cdot X^3 = X^2 \cdot X^2 \cdot X^2$

atomic: every nonzero nonunit element can be written as the finite product of atoms

Extension of Factorization Properties to D[X]

Property	UFD	HFD	FFD	idf	BFD	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes
R[X]	yes	no	yes	no	yes	no	no

Extensiion of Factorization Properties to R[X]

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes	yes
R[X]	no	no	no	no	no	no	no	no

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Definition

R is a unique factorization ring (UFR) if *R* is atomic and every $a \in R^{\#}$ can be factored uniquely into the product of atoms up to order and associates such that if $x = a_1 \cdots a_n = b_1 \cdots b_m$ are two factorizations of nonzero nonunit element *x* into atoms

1. n = m

2. $a_i \sim b_i$ for every *i* after a reordering

Theorem

Let R be an integral domain. Then R is a UFD \iff R[X] is a UFD

Example $X^2 = X \cdot X = (X+2)(X+2)$ in $\mathbb{Z}/4\mathbb{Z}[X]$

<u>Question</u>: When is R[X] a UFR where R is an arbitrary commutative ring with zero divisors?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Issues

- 1. Lack of uniformity in the theory
- 2. Nontrivial idempotents

Definition

We say $e \in R$ is an idempotent if $e^2 = 0$.

▶ If
$$e^2 = e$$
 then $e(e - 1) = 0$.
▶ $Id(R) = Id(R[X])$

Example

 $3 \in \mathbb{Z}_6$ is an atom, $3 = 3, 3 = 3 \cdot 3, 3 = 3 \cdot 3^2, \dots, 3 = 3^n$

Example

$$(1,0)=(2,0)(rac{1}{2},0)(2,0)(rac{1}{2},0)$$
 in $\mathbb{Q} imes \mathbb{Q}$

Irreducibles in a Domain

Definitions

a ∈ D[#] is <u>irreducible</u> if a = bc ⇒ b ∈ U(R) or c ∈ U(R)
a, b ∈ D[#] are <u>associated</u>, a ~ b, if a | b and b | a, i.e. (a) = (b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Theorem (The following are equivalent:)

- 1. a is irreducible
- 2. $a = bc \implies a \sim b \text{ or } a \sim c$
- 3. (a) is maximal in Prin(D)

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a) = (b)$
strongly associated	$a pprox b$ if $a = ub$ for some $u \in U(R)$
very strongly associated	$a \cong b$ if (1) $a \sim b$ and (2) $a = b = 0$
	or $a \neq 0$ and $a = rb \implies r \in U(R)$

Consider $(0,1)\in\mathbb{Z}_2 imes\mathbb{Z}_2$,

- ▶ $(0,1) \sim (0,1)$ since < (0,1) > = < (0,1) >
- $(0,1) \approx (0,1)$ since (0,1) = (1,1)(0,1)
- ▶ $(0,1) \not\cong (0,1)$ since (0,1) = (0,1)(0,1)

<u>Note:</u> We say *R* is **présimplifiable** if all of the associate conditions agree, i.e. if x = xy implies x = 0 or $y \in U(R)$

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a) = (b)$
strongly associated	$a \approx b$ if $a = ub$ for some $u \in U(R)$
very strongly associated	$a \cong b$ if (1) $a \sim b$ and (2) $a = b = 0$
	or $a \neq 0$ and $a = rb \implies r \in U(R)$

Types of Irreducible Elements

irreducible	$a = bc \implies a \sim b \text{ or } a \sim c$
strongly irreducible	$a = bc \implies a \approx b \text{ or } a \approx c$
very strongly irreducible	$a = bc \implies a \cong b \text{ or } a \cong c$
<i>m</i> -irreducible	(a) is maximal in Prin(R)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Types of UFRs

- 1. Fletcher UFR (1969)
- 2. Bouvier-Galovich UFR (1974-1978)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 3. $(\alpha, \beta) UFR$ (1996)
- 4. Reduced UFR (2003)
- 5. Weak UFR (2011)

Properties of X

Theorem (Anderson, Edmonds '18)

Let R be a commutative ring and X an indeterminate over R.

- 1. X is irreducible \iff R is indecomposable
- 2. If X is the finite product of n atoms, then R is isomorphic to the finite direct product of n indecomposable rings
- 3. If X is the finite product of atoms, then the factorization of X is unique

Example

In $\mathbb{Z}_6[X]$, $X = (3X+2)(2X+3) = 6X^2 + 13X + 6 = X$.

So, $\mathbb{Z}_6[X] \cong R_1[X] \times R_2[X]$ by (2).

<u>Note</u>: $\mathbb{Z}_6[X] \cong \mathbb{Z}_3[X] \times \mathbb{Z}_2[X]$ and 3X + 2 and 2X + 3 are atoms since $3X + 2 \mapsto (2, X)$ and $2X + 3 \mapsto (2X, 1)$

(α, β) -UFRs

Definition

Let $\alpha \in \{ \text{ atomic, strongly atomic, very strongly atomic, } m\text{-atomic, } p\text{-atomic } \}$ and $\beta \in \{ \text{ isomorphic, strongly isomorphic, very strongly isomorphic } \}.$

Then R is a (α, β) -unique factorization ring if:

- 1. R is α
- 2. any two factorizations of $a \in R^{\#}$ into atoms of the type to define α are β

<u>Note</u>: For any choice of α and β except $\alpha = p$ -atomic, R is présimplifiable.

▶ *R* is a unique factorization ring if *R* is an (α, β) -UFR for some (α, β) except $\alpha = p$ -atomic.

Bouvier-Galovich UFRs

Bouvier UFR 1974	Galovich UFR 1978
• <i>m</i> -irreducible	• very strongly irreducible
• associate	 strongly associate
• (<i>m</i> -atomic, isomorphic)-UFR	(very strongly atomic,
	strongly isomorphic)-UFR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Theorem

R is a B-G UFR if R satisfies one of the following:

- 1. R is a UFD
- 2. (R, M) is quasi-local where $M^2 = 0$
- 3. R is a special principal ideal ring (SPIR)

Theorem R[X] is a B-G UFR \iff R[X] is a UFD

Bouvier-Galovich UFRs

Theorem R[X] is a B-G UFR \iff R[X] is a UFD Proof Sketch.

> → Let $a, b \in R$ such ab = 0 so that a and b are nonzero → X, X - a, and X - b are irreducible since R is indecomposable → We have $(X - a)(X - b) = X^2 - (a + b)X + ab$ $= X^2 - (a + b)X$

$$=X(X-(a+b))$$

 \rightarrow A contradiction, so R is a domain and R[X] is a UFD

・ロト・日本・日本・日本・日本・日本・日本

Reduced UFRs

Reduced Factorizations

reduced	$a \neq a_1 \cdots \hat{a_i} \cdots a_n$ for any $i \in \{1, \ldots, n\}$
strongly reduced	$a eq a_1 \cdots \hat{a_{i_1}} \cdots \hat{a_{i_j}} \cdots a_n$ for any nonempty
	proper subset $\{i_1, \cdots, i_j\} \subsetneq \{1, \ldots, n\}$.

Example

 $(1,0)=(2,0)(\frac{1}{2},0)(2,0)(\frac{1}{2},0)$ in $\mathbb{Q}\times\mathbb{Q}$ is reduced but NOT strongly reduced

Definition

R is a strongly reduced (respectively <u>reduced</u>) UFR if:

- 1. R is atomic
- 2. if $a = a_1 \cdots a_n = b_1 \cdots b_m$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then n = m and after a reordering $a_i \sim b_i$ for $i \in \{1, \ldots, n\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reduced UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] strongly reduced UFR
- 2. R[X] reduced UFR
- R is a UFD or a finite direct product of domains D₁ × ··· × D_n with n ≥ 2 and each D_i is a UFD (possibly a field) with group of units U(D_i) = {1}

<u>Note:</u> We need the group of units to be trivial to avoid contradicting that R is strongly reduced.

$$(0, 1, \ldots, 1) = (0, 1, \ldots, 1, u, 1)(0, 1, \ldots, 1, v, 1) = (0, 1, \ldots, 1, \ldots, 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fletcher UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] is a Fletcher UFR,
- 2. R[X] is p-atomic,
- 3. R is a finite direct product of UFDs,
- 4. R[X] is factorial, and
- 5. every regular element of R[X] is a product of principal primes

<u>Note</u>: Fletcher used U-factorizations to solve problems with nontrivial idempotents

$$3 \in \mathbb{Z}_6$$
 is an atom, $3 = 3, 3 = 3 \cdot 3, \dots, 3 = 3^n$

 $\Rightarrow 3 = 3^n \lceil 3 \rceil$

Weak UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] is a weak UFR
- 2. every $f \in R[X]^{\#}$ is a product of weakly primes
- 3. R[X] is atomic and each atom is weakly prime
- 4. R is the finite direct product of UFDs

<u>Note</u>: *P* is weakly prime if $0 \neq ab \in P$ implies $a \in P$ or $b \in P$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Main Result

Theorem (Anderson, Edmonds '18)

R[X] is a UFR if and only if R is a UFD or isomorphic to the finite direct product of UFDs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Counterexamples for weaker factorization properties:

$$R(+)N: (r_1, n_1)(r_2, n_2) = (r_1r_2, r_2n_1 + r_1n_2)$$

where R = D a quasi-local domain and N = D/M.

Theorem

Let (D, M) be a quasi-local domain with maximal ideal M and let R = D(+)D/M, then the following hold:

- 1. R[X] satisfies ACCP if and only if R satisfies ACCP
- 2. *R*[*X*] is a bounded factorization ring if and only if *R* is a bounded factorization ring

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

R[X] is atomic if and only if R is atomic??????

Future Directions

Factorization in monoid rings R[X, M] : "polynomials" in X with coefficients in R and exponents in M

Example $\mathbb{Z}[X; \mathbb{Z}/2\mathbb{Z}]$ is no longer a domain since $(X+1)(X-1) = X^2 - 1 = 1 - 1 = 0$

Example $\mathbb{C}[X,\mathbb{Q}^+] \text{ is an antimatter domain }$