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Main Goal

How do certain factorization properties of a commutative ring R
behave under the polynomial extension R[X]?
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Unique Factorization

Fundamental Theorem of Arithmetic (FTA)
every integer can be factored uniquely into the product of primes



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unique Factorization

Unique Factorization Domain
every element can be factored uniquely into the product of atoms
Example
Rings with the Unique Factorization Property
▶ Z
▶ R
▶ C
▶ Z[X]
▶ Z/4Z

In Z/4Z, 2 · 2 = 0 so 2 is called a zero divisor

Note: a domain is a commutative ring with where 0 is the only
zero divisor
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Non-Unique Factorization

Consider the ring: R+ XC[X]

in
▶ √

3 + X(2iX3 + 7X + i)
▶ X
▶

(
1 + i

2

)
X

out
▶ 3i
▶ 1 + i

Factorization of X2 in
R+ XC[X]

X2 = X · X
= (iX)(−iX)

= (1 + i)X
(

1 − i
2

)
X

= (2 + i)X
(

2 − i
5

)
X︸ ︷︷ ︸

X2is divisible by {(r+i)X}

half-factorial ring: every factorization of a nonzero nonunit
element into atoms has the same length
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Non-Unique Factorization

finite factorization ring: every nonzero nonunit has only a finite
number of factorizations into atoms
Example
Examples of FFRs
▶ any UFR
▶ some HFRs, Z

√
−5 = {a + b

√
−5 | a, b ∈ Z};

6 = 3 · 2 = (1 −
√
−5)(1 +

√
−5)

▶ R[X2,X3]
X6 = X3 · X3 = X2 · X2 · X2

atomic: every nonzero nonunit element can be written as the
finite product of atoms
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Extension of Factorization Properties to D[X]

Property UFD HFD FFD idf BFD ACCP atomic
R yes yes yes yes yes yes yes

R[X] yes no yes no yes no no
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Extenstion of Factorization Properties to R[X]

Property UFR HFR FFR WFFR idf BFR ACCP atomic
R yes yes yes yes yes yes yes yes

R[X] no no no no no no no no



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definition
R is a unique factorization ring (UFR) if R is atomic and every
a ∈ R# can be factored uniquely into the product of atoms up to
order and associates such that if x = a1 · · · an = b1 · · · bm are two
factorizations of nonzero nonunit element x into atoms

1. n = m
2. ai ∼ bi for every i after a reordering

Theorem
Let R be an integral domain. Then R is a UFD ⇐⇒ R[X] is a
UFD

Example
X2 = X · X = (X + 2)(X + 2) in Z/4Z[X]
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Question: When is R[X] a UFR where R is an arbitrary
commutative ring with zero divisors?
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Issues

1. Lack of uniformity in the theory
2. Nontrivial idempotents

Definition
We say e ∈ R is an idempotent if e2 = 0.

▶ If e2 = e then e(e − 1) = 0.
▶ Id(R) = Id(R[X])

Example
3 ∈ Z6 is an atom, 3 = 3, 3 = 3 · 3, 3 = 3 · 32, . . . , 3 = 3n

Example
(1, 0) = (2, 0)(1

2 , 0)(2, 0)(
1
2 , 0) in Q×Q
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Irreducibles in a Domain

Definitions
▶ a ∈ D# is irreducible if a = bc =⇒ b ∈ U(R) or c ∈ U(R)
▶ a, b ∈ D# are associated, a ∼ b, if a | b and b | a, i.e.

(a) = (b)

Theorem (The following are equivalent:)

1. a is irreducible
2. a = bc =⇒ a ∼ b or a ∼ c
3. (a) is maximal in Prin(D)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irreducibles in Commutative Rings with Zero Divisors
Types of Associate Relations

associated a ∼ b if a | b and b | a, i.e. (a) = (b)
strongly associated a ≈ b if a = ub for some u ∈ U(R)

very strongly associated a ∼= b if (1) a ∼ b and (2) a = b = 0
or a ̸= 0 and a = rb =⇒ r ∈ U(R)

Consider (0, 1) ∈ Z2 × Z2,
▶ (0, 1) ∼ (0, 1) since < (0, 1) >=< (0, 1) >
▶ (0, 1) ≈ (0, 1) since (0, 1) = (1, 1)(0, 1)
▶ (0, 1) ̸∼= (0, 1) since (0, 1) = (0, 1)(0, 1)

Note: We say R is présimplifiable if all of the associate conditions
agree, i.e. if x = xy implies x = 0 or y ∈ U(R)
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Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated a ∼ b if a | b and b | a, i.e. (a) = (b)
strongly associated a ≈ b if a = ub for some u ∈ U(R)

very strongly associated a ∼= b if (1) a ∼ b and (2) a = b = 0
or a ̸= 0 and a = rb =⇒ r ∈ U(R)

Types of Irreducible Elements

irreducible a = bc =⇒ a ∼ b or a ∼ c
strongly irreducible a = bc =⇒ a ≈ b or a ≈ c

very strongly irreducible a = bc =⇒ a ∼= b or a ∼= c
m-irreducible (a) is maximal in Prin(R)
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Types of UFRs

1. Fletcher UFR (1969)
2. Bouvier-Galovich UFR (1974-1978)
3. (α, β)− UFR (1996)
4. Reduced UFR (2003)
5. Weak UFR (2011)
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Properties of X

Theorem (Anderson, Edmonds ’18)
Let R be a commutative ring and X an indeterminate over R.

1. X is irreducible ⇐⇒ R is indecomposable
2. If X is the finite product of n atoms, then R is isomorphic to

the finite direct product of n indecomposable rings
3. If X is the finite product of atoms, then the factorization of X

is unique

Example
In Z6[X], X = (3X + 2)(2X + 3) = 6X2 + 13X + 6 = X.

So, Z6[X] ∼= R1[X]× R2[X] by (2).

Note: Z6[X] ∼= Z3[X]× Z2[X] and 3X + 2 and 2X + 3 are atoms
since 3X + 2 7→ (2,X) and 2X + 3 7→ (2X, 1)
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(α, β)-UFRs

Definition
Let α ∈ { atomic, strongly atomic, very strongly atomic,
m-atomic, p-atomic } and β ∈ { isomorphic, strongly isomorphic,
very strongly isomorphic }.

Then R is a (α, β)-unique factorization ring if:
1. R is α

2. any two factorizations of a ∈ R# into atoms of the type to
define α are β

Note: For any choice of α and β except α = p-atomic, R is
présimplifiable.
▶ R is a unique factorization ring if R is an (α, β)-UFR for some

(α, β) except α = p-atomic.
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Bouvier-Galovich UFRs

Bouvier UFR 1974 Galovich UFR 1978
• m-irreducible • very strongly irreducible
• associate • strongly associate
• (m-atomic, isomorphic)-UFR (very strongly atomic,

strongly isomorphic)-UFR

Theorem
R is a B-G UFR if R satisfies one of the following:

1. R is a UFD
2. (R,M) is quasi-local where M2 = 0
3. R is a special principal ideal ring (SPIR)

Theorem
R[X] is a B-G UFR ⇐⇒ R[X] is a UFD
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Bouvier-Galovich UFRs

Theorem
R[X] is a B-G UFR ⇐⇒ R[X] is a UFD

Proof Sketch.
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Reduced UFRs
Reduced Factorizations

reduced a ̸= a1 · · · âi · · · an for any i ∈ {1, . . . , n}
strongly reduced a ̸= a1 · · · âi1 · · · âij · · · an for any nonempty

proper subset {i1, · · · , ij} ⊊ {1, . . . , n}.
Example
(1, 0) = (2, 0)(1

2 , 0)(2, 0)(
1
2 , 0) in Q×Q is reduced but NOT

strongly reduced

Definition
R is a strongly reduced (respectively reduced) UFR if:

1. R is atomic
2. if a = a1 · · · an = b1 · · · bm are two strongly reduced

(respectively reduced) factorizations of a nonunit a ∈ R, then
n = m and after a reordering ai ∼ bi for i ∈ {1, . . . , n}.
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Reduced UFRs

Theorem (Anderson, Edmonds ’18)
The following are equivalent:

1. R[X] strongly reduced UFR
2. R[X] reduced UFR
3. R is a UFD or a finite direct product of domains

D1 × · · · × Dn with n ≥ 2 and each Di is a UFD (possibly a
field) with group of units U(Di) = {1}

Note: We need the group of units to be trivial to avoid
contradicting that R is strongly reduced.

(0, 1, . . . , 1) = (0, 1, . . . , 1, u, 1)(0, 1, . . . , 1, v, 1) = (0, 1, . . . , 1, . . . , 1)
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Fletcher UFRs

Theorem (Anderson, Edmonds ’18)
The following are equivalent:

1. R[X] is a Fletcher UFR,
2. R[X] is p-atomic,
3. R is a finite direct product of UFDs,
4. R[X] is factorial, and
5. every regular element of R[X] is a product of principal primes

Note: Fletcher used U-factorizations to solve problems with
nontrivial idempotents

3 ∈ Z6 is an atom, 3 = 3, 3 = 3 · 3, . . . , 3 = 3n

⇒ 3 = 3n⌈3⌉
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Weak UFRs

Theorem (Anderson, Edmonds ’18)
The following are equivalent:

1. R[X] is a weak UFR
2. every f ∈ R[X]# is a product of weakly primes
3. R[X] is atomic and each atom is weakly prime
4. R is the finite direct product of UFDs

Note: P is weakly prime if 0 ̸= ab ∈ P implies a ∈ P or b ∈ P
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Main Result

Theorem (Anderson, Edmonds ’18)
R[X] is a UFR if and only if R is a UFD or isomorphic to the finite
direct product of UFDs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Future Directions

▶ Counterexamples for weaker factorization properties:

R(+)N : (r1, n1)(r2, n2) = (r1r2, r2n1 + r1n2)

where R = D a quasi-local domain and N = D/M.

Theorem
Let (D,M) be a quasi-local domain with maximal ideal M and let
R = D(+)D/M, then the following hold:

1. R[X] satisfies ACCP if and only if R satisfies ACCP
2. R[X] is a bounded factorization ring if and only if R is a

bounded factorization ring

R[X] is atomic if and only if R is atomic??????
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Future Directions

▶ Factorization in monoid rings R[X,M] :
“polynomials” in X with coefficients in R and exponents in M

Example
Z[X;Z/2Z] is no longer a domain since
(X + 1)(X − 1) = X2 − 1 = 1 − 1 = 0

Example
C[X,Q+] is an antimatter domain


