Unique Factorization in Polynomial Rings with Zero Divisors

Ranthony A.C. Edmonds
Ross Assistant Professor
The Ohio State University

AMS Fall Central Sectional Meeting
University of Michigan
October 21, 2018

Notation

- R : commutative ring with identity
- $R^{\#}$: set of nonzero nonunits
- $\operatorname{Prin}(R)$: set of proper principal ideals
- $Z(R)$: set of zero divisors

Main Goal

How do certain factorization properties of a commutative ring R behave under the polynomial extension $R[X]$?

Extension of Factorization Properties to $D[X]$

Property	UFD	HFD	FFD	idf-domain	BFD	ACCP	atomic
R	yes						
$R[X]$	yes	no	yes	no	yes	no	no

Extenstion of Factorization Properties to $R[X]$

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes							
$R[X]$	no							

Definition

R is a unique factorization ring (UFR) if R is atomic and every $a \in R^{\#}$ can be factored uniquely into the product of atoms up to order and associates

Theorem
Let R be an integral domain. Then R is a UFD $\Longleftrightarrow R[X]$ is a UFD

Question: When is $R[X]$ a UFR where R is an arbitrary commutative ring with zero divisors?

Irreducibles in a Domain

Definitions

- $a \in D^{\#}$ is irreducible if $a=b c \Longrightarrow b \in U(R)$ or $c \in U(R)$
- $a, b \in D^{\#}$ are associated, $a \sim b$, if $a \mid b$ and $b \mid a$, i.e.
$(a)=(b)$

Theorem (The following are equivalent:)

1. a is irreducible
2. $a=b c \Longrightarrow a \sim b$ or $a \sim c$
3. (a) is maximal in $\operatorname{Prin}(D)$

Note: If $a \in D$ be irreducible, then a is irreducible in $D[X]$

Examples

- $p \in \mathbb{Z}$ is irreducible, and $p \in \mathbb{Z}[X]$ is irreducible
- $a=f g$ in $D[X]$ implies $f, g \in D$

If $a \in R$ be irreducible, then a is not necessarily irreducible in $R[X]$

- 0 is irreducible in K, but (0) is not maximal in $K[X]$, so 0 is not irreducible in $K[X]$

Our notion of irreducible in a domain is too strong in a commutative ring with zero divisors!

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a)=(b)$
strongly associated	$a \approx b$ if $a=u b$ for some $u \in U(R)$
very strongly associated	$a \cong b$ if (1) $a \sim b$ and (2) $a=b=0$ or $a \neq 0$ and $a=r b \Longrightarrow r \in U(R)$

Types of Irreducible Elements

irreducible	$a=b c \Longrightarrow a \sim b$ or $a \sim c$
strongly irreducible	$a=b c \Longrightarrow a \approx b$ or $a \approx c$
very strongly irreducible	$a=b c \Longrightarrow a \cong b$ or $a \cong c$
m-irreducible	(a) is maximal in $\operatorname{Prin}(R)$

very strongly associated \Longrightarrow strongly associated \Longrightarrow associated
v.s. irreducible \Longrightarrow m-irreducible \Longrightarrow s. irreducible \Longrightarrow irreducible
p-atomic

v.s. atomic \Longrightarrow m-atomic \Longrightarrow s. atomic \Longrightarrow atomic

Types of UFRs

1. $(\alpha, \beta)-U F R$
2. Bouvier-Galovich UFR
3. Fletcher UFR
4. Reduced UFR
5. Weak UFR

Properties of X

1. X is irreducible $\Longleftrightarrow R$ is indecomposable
2. If X is the finite product of n atoms, then R is isomorphic to the finite direct product of n indecomposable rings
3. If X is the finite product of atoms, then the factorization of X is unique

Example

$\ln \mathbb{Z}_{6}[X], \quad X=(3 X+2)(2 X+3)=6 X^{2}+13 X+6=X$.
So, $\mathbb{Z}_{6}[X] \cong R_{1}[X] \times R_{2}[X]$ by (2).

Note: $\mathbb{Z}_{6}[X] \cong \mathbb{Z}_{3}[X] \times \mathbb{Z}_{2}[X]$ and $3 X+2$ and $2 X+3$ are atoms since $3 X+2 \mapsto(2, X)$ and $2 X+3 \mapsto(2 X, 1)$

(α, β)-UFRs

Definition

Let $\alpha \in\{$ atomic, strongly atomic, very strongly atomic, m-atomic, p-atomic $\}$ and $\beta \in\{$ isomorphic, strongly isomorphic, very strongly isomorphic $\}$.

Then R is a (α, β)-unique factorization ring if:

1. R is α
2. any two factorizations of $a \in R^{\#}$ into atoms of the type to define α are β

Note: For any choice of α and β except $\alpha=p$-atomic, R is présimplifiable.

- R is a unique factorization ring if R is an (α, β)-UFR for some (α, β) except $\alpha=p$-atomic.

Bouvier-Galovich UFRs

Bouvier UFR	Galovich UFR
- m-irreducible	• very strongly irreducible
- associate	• strongly associate
- (m-atomic, isomorphic)-UFR	(very strongly atomic,
	strongly isomorphic)-UFR

Theorem

R is a $B-G$ UFR if R satisfies one of the following:

1. R is a UFD
2. (R, M) is quasi-local where $M^{2}=0$
3. R is a special principal ideal ring (SPIR)

Theorem
$R[X]$ is a $B-G U F R \Longleftrightarrow R[X]$ is a UFD

Bouvier-Galovich UFRs

Theorem
$R[X]$ is a $B-G U F R \Longleftrightarrow R[X]$ is a UFD
Proof Sketch.
\rightarrow Let $a, b \in R$ such $a b=0$ so that a and b are nonzero
$\rightarrow X, X-a$, and $X-b$ are irreducible since R is
indecomposable
\rightarrow We have $(X-a)(X-b)=X^{2}-(a+b) X+a b$

$$
\begin{aligned}
& =X^{2}-(a+b) X \\
& =X(X-(a+b))
\end{aligned}
$$

\rightarrow A contradiction, so R is a domain and $R[X]$ is a UFD

Reduced UFRs

Reduced Factorizations

reduced	$a \neq a_{1} \cdots \hat{a_{i}} \cdots a_{n}$ for any $i \in\{1, \ldots, n\}$
strongly reduced	$a \neq a_{1} \cdots \hat{i_{1}} \cdots \hat{i_{j}} \cdots a_{n}$ for any nonempty proper subset $\left\{i_{1}, \cdots, i_{j}\right\} \subsetneq\{1, \ldots, n\}$.

Example

$(1,0)=(2,0)\left(\frac{1}{2}, 0\right)(2,0)\left(\frac{1}{2}, 0\right)$ in $\mathbb{Q} \times \mathbb{Q}$ is reduced but NOT strongly reduced

Definition

R is a strongly reduced (respectively reduced) UFR if:

1. R is atomic
2. if $a=a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then $n=m$ and after a reordering $a_{i} \sim b_{i}$ for $i \in\{1, \ldots, n\}$.

Reduced UFRs

Theorem (The following are equivalent:)

1. $R[X]$ strongly reduced UFR
2. $R[X]$ reduced UFR
3. R is a UFD or a finite direct product of domains $D_{1} \times \cdots \times D_{n}$ with $n \geq 2$ and each D_{i} is a UFD (possibly a field) with group of units $U\left(D_{i}\right)=\{1\}$

Characterizations of other UFRs

Theorem (The following are equivalent:)

1. $R[X]$ is a Fletcher UFR,
2. $R[X]$ is p-atomic,
3. R is a finite direct product of UFDs,
4. $R[X]$ is factorial, and
5. every regular element of $R[X]$ is a product of principal primes

Theorem (The following are equivalent:)

1. $R[X]$ is a weak UFR
2. every $f \in R[X]^{\#}$ is a product of weakly primes
3. $R[X]$ is atomic and each atom is weakly prime
4. R is the finite direct product of UFDs

Main Result

Theorem (Anderson, Edmonds 2018)
$R[X]$ is a UFR if and only if R is a UFD or isomorphic to the finite direct product of UFDs.

