Unique Factorization in Polynomial Rings with Zero Divisors

Ranthony A.C. Edmonds Ross Assistant Professor The Ohio State University

AMS Fall Central Sectional Meeting University of Michigan October 21, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation

- ► *R* : commutative ring with identity
- $R^{\#}$: set of nonzero nonunits
- Prin(R) : set of proper principal ideals

 \blacktriangleright Z(R) : set of zero divisors

Main Goal

How do certain factorization properties of a commutative ring R behave under the polynomial extension R[X]?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Extension of Factorization Properties to D[X]

Property	UFD	HFD	FFD	idf-domain	BFD	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes
R[X]	yes	no	yes	no	yes	no	no

Extensiion of Factorization Properties to R[X]

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes	yes
R[X]	no	no	no	no	no	no	no	no

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Definition

R is a unique factorization ring (UFR) if *R* is atomic and every $a \in R^{\text{#}}$ can be factored uniquely into the product of atoms up to order and associates

Theorem

Let R be an integral domain. Then R is a UFD \iff R[X] is a UFD

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<u>Question</u>: When is R[X] a UFR where R is an arbitrary commutative ring with zero divisors?

Irreducibles in a Domain

Definitions

a ∈ D[#] is <u>irreducible</u> if a = bc ⇒ b ∈ U(R) or c ∈ U(R)
a, b ∈ D[#] are <u>associated</u>, a ~ b, if a | b and b | a, i.e. (a) = (b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (The following are equivalent:)

- 1. a is irreducible
- 2. $a = bc \implies a \sim b \text{ or } a \sim c$
- 3. (a) is maximal in Prin(D)

<u>Note</u>: If $a \in D$ be irreducible, then a is irreducible in D[X]

Examples

- ▶ $p \in \mathbb{Z}$ is irreducible, and $p \in \mathbb{Z}[X]$ is irreducible
- a = fg in D[X] implies $f, g \in D$

If $a \in R$ be irreducible, then a is not necessarily irreducible in R[X]

▶ 0 is irreducible in K, but (0) is not maximal in K[X], so 0 is not irreducible in K[X]

Our notion of irreducible in a domain is too strong in a commutative ring with zero divisors!

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a) = (b)$
strongly associated	$a \approx b$ if $a = ub$ for some $u \in U(R)$
very strongly associated	$a \cong b$ if (1) $a \sim b$ and (2) $a = b = 0$
	or $a \neq 0$ and $a = rb \implies r \in U(R)$

Types of Irreducible Elements

irreducible	$a = bc \implies a \sim b \text{ or } a \sim c$
strongly irreducible	$a = bc \implies a \approx b \text{ or } a \approx c$
very strongly irreducible	$a = bc \implies a \cong b \text{ or } a \cong c$
<i>m</i> -irreducible	(a) is maximal in Prin(R)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Types of UFRs

- 1. $(\alpha, \beta) UFR$
- 2. Bouvier-Galovich UFR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 3. Fletcher UFR
- 4. Reduced UFR
- 5. Weak UFR

Properties of X

- 1. X is irreducible $\iff R$ is indecomposable
- 2. If X is the finite product of n atoms, then R is isomorphic to the finite direct product of n indecomposable rings
- 3. If X is the finite product of atoms, then the factorization of X is unique

Example

In
$$\mathbb{Z}_6[X]$$
, $X = (3X+2)(2X+3) = 6X^2 + 13X + 6 = X$.

So, $\mathbb{Z}_6[X] \cong R_1[X] \times R_2[X]$ by (2).

<u>Note</u>: $\mathbb{Z}_6[X] \cong \mathbb{Z}_3[X] \times \mathbb{Z}_2[X]$ and 3X + 2 and 2X + 3 are atoms since $3X + 2 \mapsto (2, X)$ and $2X + 3 \mapsto (2X, 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(α, β) -UFRs

Definition

Let $\alpha \in \{ \text{ atomic, strongly atomic, very strongly atomic, } m\text{-atomic, } p\text{-atomic } \}$ and $\beta \in \{ \text{ isomorphic, strongly isomorphic, very strongly isomorphic } \}.$

Then R is a (α, β) -unique factorization ring if:

- 1. R is α
- 2. any two factorizations of $a \in R^{\#}$ into atoms of the type to define α are β

<u>Note</u>: For any choice of α and β except $\alpha = p$ -atomic, R is présimplifiable.

R is a unique factorization ring if R is an (α, β) -UFR for some (α, β) except $\alpha = p$ -atomic.

Bouvier-Galovich UFRs

Bouvier UFR	Galovich UFR
• <i>m</i> -irreducible	• very strongly irreducible
• associate	 strongly associate
• (<i>m</i> -atomic, isomorphic)-UFR	(very strongly atomic,
	strongly isomorphic)-UFR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Theorem

R is a B-G UFR if R satisfies one of the following:

- 1. R is a UFD
- 2. (R, M) is quasi-local where $M^2 = 0$
- 3. R is a special principal ideal ring (SPIR)

Theorem R[X] is a B-G UFR \iff R[X] is a UFD

Bouvier-Galovich UFRs

Theorem R[X] is a B-G UFR \iff R[X] is a UFD Proof Sketch.

> → Let $a, b \in R$ such ab = 0 so that a and b are nonzero → X, X - a, and X - b are irreducible since R is indecomposable → We have $(X - a)(X - b) = X^2 - (a + b)X + ab$ $= X^2 - (a + b)X$

$$=X(X-(a+b))$$

 \rightarrow A contradiction, so R is a domain and R[X] is a UFD

・ロト・日本・日本・日本・日本・日本

Reduced UFRs

Reduced Factorizations

reduced	$a \neq a_1 \cdots \hat{a_i} \cdots a_n$ for any $i \in \{1, \ldots, n\}$
strongly reduced	$a eq a_1 \cdots \hat{a_{i_1}} \cdots \hat{a_{i_j}} \cdots a_n$ for any nonempty
	proper subset $\{i_1, \cdots, i_j\} \subsetneq \{1, \ldots, n\}$.

Example

 $(1,0)=(2,0)(\frac{1}{2},0)(2,0)(\frac{1}{2},0)$ in $\mathbb{Q}\times\mathbb{Q}$ is reduced but NOT strongly reduced

Definition

R is a strongly reduced (respectively <u>reduced</u>) UFR if:

- 1. R is atomic
- 2. if $a = a_1 \cdots a_n = b_1 \cdots b_m$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then n = m and after a reordering $a_i \sim b_i$ for $i \in \{1, \ldots, n\}$.

Theorem (The following are equivalent:)

- 1. R[X] strongly reduced UFR
- 2. R[X] reduced UFR
- 3. *R* is a UFD or a finite direct product of domains $D_1 \times \cdots \times D_n$ with $n \ge 2$ and each D_i is a UFD (possibly a field) with group of units $U(D_i) = \{1\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Characterizations of other UFRs

Theorem (The following are equivalent:)

- 1. R[X] is a Fletcher UFR,
- 2. R[X] is p-atomic,
- 3. R is a finite direct product of UFDs,
- 4. R[X] is factorial, and
- 5. every regular element of R[X] is a product of principal primes

Theorem (The following are equivalent:)

- 1. R[X] is a weak UFR
- 2. every $f \in R[X]^{\#}$ is a product of weakly primes
- 3. R[X] is atomic and each atom is weakly prime
- 4. R is the finite direct product of UFDs

Main Result

Theorem (Anderson, Edmonds 2018)

R[X] is a UFR if and only if R is a UFD or isomorphic to the finite direct product of UFDs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ