## Gaussian Amicable Pairs: "Friendly Imaginary Numbers"

Patrick Costello and Ranthony Clark<br>Eastern Kentucky University<br>Richmond, Kentucky

$$
\text { May 1, } 2013
$$

Question: What are amicable pairs in the integers, i.e. how do we define "real friendly numbers?"

## Sum of Divisors Function

- used to calculate the sum of the positive divisors of a given integer $n$, denoted $\sigma(n)$
- if $d$ is a divisor of $n$ then, $\sigma(n)=\sum_{d \mid n} d$


## Sum of Divisors Function

- used to calculate the sum of the positive divisors of a given integer $n$, denoted $\sigma(n)$
- if $d$ is a divisor of $n$ then, $\sigma(n)=\sum_{d \mid n} d$
- ex.

$$
\begin{aligned}
\sigma(12) & =1+2+3+4+6+12 \\
& =28
\end{aligned}
$$

## Properties of $\sigma(n)$

- multiplicative: $\sigma(m n)=\sigma(m) \sigma(n)$ where $(m, n)=1$


## Properties of $\sigma(n)$

- multiplicative: $\sigma(m n)=\sigma(m) \sigma(n)$ where $(m, n)=1$
- if $p$ is a prime, then $\sigma(p)=p+1$


## Properties of $\sigma(n)$

- multiplicative: $\sigma(m n)=\sigma(m) \sigma(n)$ where $(m, n)=1$
- if $p$ is a prime, then $\sigma(p)=p+1$
- if $p$ is prime and $e$ is any positive integer $\sigma\left(p^{e}\right)=\frac{p^{e+1}-1}{p-1}$


## Properties of $\sigma(n)$

- multiplicative: $\sigma(m n)=\sigma(m) \sigma(n)$ where $(m, n)=1$
- if $p$ is a prime, then $\sigma(p)=p+1$
- if $p$ is prime and $e$ is any positive integer $\sigma\left(p^{e}\right)=\frac{p^{e+1}-1}{p-1}$
- if $n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}$, then $\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\left(\alpha_{i}+1\right)}-1}{p_{i}-1}$

$$
\begin{aligned}
\sigma(12) & =\sigma\left(2^{2}\right) \sigma(3) \\
& =\left(\frac{2^{2+1}-1}{2-1}\right)(3+1) \\
& =(7)(4) \\
& =28
\end{aligned}
$$



- two integers $m$ and $n$ are said to be amicable if $\sigma(m)-m=n$ and $\sigma(n)-n=m$
- proper divisors of one integer equals the proper divisors of the other
- $(m, n)$ is called an amicable pair
ex. The smallest amicable pair in $\mathbb{Z}$ is $(220,284)$

$$
\begin{aligned}
\sigma(220) & =\sigma\left(2^{2} \cdot 5 \cdot 11\right) \\
& =\sigma\left(2^{2}\right) \sigma(5) \sigma(11) \\
& =\left(\frac{2^{3}-1}{2-1}\right)(5+1)(11+1) \\
& =(7)(6)(12) \\
& =504
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma(220)-220 & =504-220 \\
& =284
\end{aligned}
$$

$$
\begin{aligned}
\sigma(284) & =\sigma\left(2^{2} \cdot 71\right) \\
& =\sigma\left(2^{2}\right) \sigma(71) \\
& =\left(\frac{2^{3}-1}{2-1}\right)(71+1) \\
& =(7)(72) \\
& =504 \\
& \text { and } \\
\sigma(284)-284 & =504-284 \\
& =220
\end{aligned}
$$

## Pairs of a Certain Type

Consider again the pair $(220,284)$, then $\begin{cases}220 & =2^{2} \cdot 5 \cdot 11 \\ 284 & =2^{2} \cdot 71\end{cases}$

So this pair is of the form ( $E p q, E r$ ) where $E$ is a common factor of both numbers and $p, q$, and $r$ are distinct primes.

We call pairs of this type $(2,1)$ pairs.

## Pairs of a Certain Type (cont'd)

There are also $(2,2)$ pairs, $(4,3)$ pairs, $(5,1)$ pairs, etc.

Consider the pair $(12285,14595)$, then $\left\{\begin{array}{l}12285=3^{3} \cdot 5 \cdot 7 \cdot 13 \\ 14595=3 \cdot 5 \cdot 7 \cdot 139\end{array}\right.$

We call pairs of this type erotic pairs.

Question: What are Gaussian amicable pairs, i.e. how do we define "imaginary friendly numbers?"

## Gaussian Integers

- Gaussian integers are denoted $\mathbb{Z}_{i}$, where $\mathbb{Z}_{i}=\{a+b i \mid a, b \in \mathbb{Z}\}$


## Gaussian Integers

- Gaussian integers are denoted $\mathbb{Z}_{i}$, where $\mathbb{Z}_{i}=\{a+b i \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_{i}$, then $\epsilon$ is a unit if there exists $z \in \mathbb{Z}$; such that $\epsilon \cdot z=1$


## Gaussian Integers

- Gaussian integers are denoted $\mathbb{Z}_{i}$, where $\mathbb{Z}_{i}=\{a+b i \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_{i}$, then $\epsilon$ is a unit if there exists $z \in \mathbb{Z}$; such that $\epsilon \cdot z=1$
- units in $\mathbb{Z}_{i}$ are given by the set: $\{1,-1, i,-i\}$


## Gaussian Integers

- Gaussian integers are denoted $\mathbb{Z}_{i}$, where $\mathbb{Z}_{i}=\{a+b i \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_{i}$, then $\epsilon$ is a unit if there exists $z \in \mathbb{Z}$; such that $\epsilon \cdot z=1$
- units in $\mathbb{Z}_{i}$ are given by the set: $\{1,-1, i,-i\}$
- Let $p \in \mathbb{Z}_{i}$ where $p$ is not a unit. The $p$ is prime if for every $a, b \in \mathbb{Z}_{i}$, $p=a b$ implies that either $a$ or $b$ is a unit


## Norm in $\mathbb{Z}_{i}$ and it's Properties

- the norm of a complex number $z=a+b i$, denoted $N(z)$ is defined by, $N(z)=a^{2}+b^{2}$


## Norm in $\mathbb{Z}_{i}$ and it's Properties

- the norm of a complex number $z=a+b i$, denoted $N(z)$ is defined by, $N(z)=a^{2}+b^{2}$
- $N(z)$ is completely multiplicative, i.e. $N(a) N(b)=N(a b)$


## Norm in $\mathbb{Z}_{i}$ and it's Properties

- the norm of a complex number $z=a+b i$, denoted $N(z)$ is defined by, $N(z)=a^{2}+b^{2}$
- $N(z)$ is completely multiplicative, i.e. $N(a) N(b)=N(a b)$
- if $N(z)=1 \Longleftrightarrow z$ is a unit in $\mathbb{Z}_{i}$


## Norm in $\mathbb{Z}_{i}$ and it's Properties

- the norm of a complex number $z=a+b i$, denoted $N(z)$ is defined by, $N(z)=a^{2}+b^{2}$
- $N(z)$ is completely multiplicative, i.e. $N(a) N(b)=N(a b)$
- if $N(z)=1 \Longleftrightarrow z$ is a unit in $\mathbb{Z}_{i}$
- if $N(z)=p$ where $p$ is prime in $\mathbb{Z}$, then $z$ is prime in $\mathbb{Z}_{i}$


## Complex Sum of Divisors Function

- Let $\eta$ be a Gaussian integer such that $\eta=\epsilon \prod \pi_{i}^{k_{i}}$ where $\epsilon$ is a unit and each $\pi_{i}$ lies in the first quadrant, then

$$
\sigma^{\star}(\eta)=\prod \frac{\pi_{i}^{k_{i}+1}-1}{\pi_{i}-1}
$$

## Amicable Pairs in the Gaussian Integers

- two Gaussian integers $m$ and $n$ are said to be amicable if $\sigma^{\star}(m)-m=n$ and $\sigma^{\star}(n)-n=m$
- in order to calculate $\sigma^{\star}(\eta)$ where $\eta \in \mathbb{Z}_{i}$ then we must first factor $\eta$ into its unique factorization up to order and units so that all of the factors of $\eta$ lie in the first quadrant.


## Important Facts

- Let $p$ be an odd prime integer, then $p$ is of the form $4 k+1$ or $4 k+3$
- If $p$ is of the form $4 k+3$, then $p$ is prime in $\mathbb{Z}_{i}$
- If $p$ is of the form $4 k+1$, then $p$ can be written as the sum of squares (i.e. $p=a^{2}+b^{2}$ )


## Important Facts

- Let $p$ be an odd prime integer, then $p$ is of the form $4 k+1$ or $4 k+3$
- If $p$ is of the form $4 k+3$, then $p$ is prime in $\mathbb{Z}_{i}$
- If $p$ is of the form $4 k+1$, then $p$ can be written as the sum of squares (i.e. $p=a^{2}+b^{2}$ )
- if $p$ is an odd prime of the form $4 k+1$ then $p$ can be written as a Gaussian integer $c+d i$ where $N(c+d i)=p$


## Important Facts (cont'd)

- $2^{n}$ in $\mathbb{Z}$ factors as $(1+i)^{2 n}$ in $\mathbb{Z}_{i}$
- If the norm of a Gaussian integer $z$ includes a power of $2^{n}$ then $(1+i)^{n}$ is a factor of $z$


## Factoring Gaussian Integers

Consider $-46+20 i$. Then we have:

$$
\begin{aligned}
-46+20 i & =(1+i)^{2}(1+4 i)(1+6 i)(-i) \\
& =(1+i)(1-i)(1+4 i)(1+6 i) \\
& =(1+i)^{2}(4-i)(1+6 i) \\
& =(1+i)^{2}(1+4 i)(6-i) \\
& =(1+i)^{2}(-4+i)(1+6 i)(-1)
\end{aligned}
$$

## Factoring Gaussian Integers (cont'd)

- $N(-46+20 i)=(-46)^{2}+20^{2}=2516$


## Factoring Gaussian Integers (cont'd)

- $N(-46+20 i)=(-46)^{2}+20^{2}=2516$
- $2516=2^{2} \cdot 17 \cdot 37$


## Factoring Gaussian Integers (cont'd)

- $N(-46+20 i)=(-46)^{2}+20^{2}=2516$
- $2516=2^{2} \cdot 17 \cdot 37$
- this means there are Gaussian integers $a+b i$ and $c+d i$ where $N(a+b i)=17$ and $N(c+d i)=37$


## Factoring Gaussian Integers (cont'd)

- In this case we could have $a+b i$ be any of:

$$
\{1+4 i, 1-4 i,-1-4 i,-1+4 i, 4+i, 4-i,-4-i,-4+i\}
$$

## Factoring Gaussian Integers (cont'd)

- In this case we could have $a+b i$ be any of:

$$
\{1+4 i, 1-4 i,-1-4 i,-1+4 i, 4+i, 4-i,-4-i,-4+i\}
$$

- Need only $1+4 i$ or $4+i$
- Similarly, for $c+d i$ we use either $1+6 i$ or $6+i$.


## Factoring Gaussian Integers (cont'd)

- In this case we could have $a+b i$ be any of:

$$
\{1+4 i, 1-4 i,-1-4 i,-1+4 i, 4+i, 4-i,-4-i,-4+i\}
$$

- Need only $1+4 i$ or $4+i$
- Similarly, for $c+d i$ we use either $1+6 i$ or $6+i$.
- $-46+20 i=(1+i)^{2}(1+4 i)(1+6 i)(-i)$


## Another Factoring Example

Consider: 736 - 16560i

- $N(736-16560 i)=(736)^{2}+(-16560)^{2}=274775296$


## Another Factoring Example

Consider: 736 - 16560i

- $N(736-16560 i)=(736)^{2}+(-16560)^{2}=274775296$
- $274775296=2^{8} \cdot 23^{2} \cdot 2029$


## Another Factoring Example

Consider: 736 - 16560i

- $N(736-16560 i)=(736)^{2}+(-16560)^{2}=274775296$
- $274775296=2^{8} \cdot 23^{2} \cdot 2029$
- Note: $2^{2}+45^{2}=2029$


## Another Factoring Example

Consider: 736 - 16560i

- $N(736-16560 i)=(736)^{2}+(-16560)^{2}=274775296$
- $274775296=2^{8} \cdot 23^{2} \cdot 2029$
- Note: $2^{2}+45^{2}=2029$
- $\frac{736-16560 i}{(1+i)^{8}}=46-1035 i$


## Another Factoring Example

Consider: 736 - 16560i

- $N(736-16560 i)=(736)^{2}+(-16560)^{2}=274775296$
- $274775296=2^{8} \cdot 23^{2} \cdot 2029$
- Note: $2^{2}+45^{2}=2029$
- $\frac{736-16560 i}{(1+i)^{8}}=46-1035 i$
- $\frac{46-1035 i}{23}=2-45 i$


## Another Factoring Example (cont'd)

- Now we need to use either $2+45 i$ or $45+2 i$ since $N(2+45 i)=N(45+2 i)=2029$


## Another Factoring Example (cont'd)

- Now we need to use either $2+45 i$ or $45+2 i$ since $N(2+45 i)=N(45+2 i)=2029$
- $\frac{2-45 i}{2+45 i}=\frac{-2021}{2029}-\frac{180}{2029} i$


## Another Factoring Example (cont'd)

- Now we need to use either $2+45 i$ or $45+2 i$ since $N(2+45 i)=N(45+2 i)=2029$
- $\frac{2-45 i}{2+45 i}=\frac{-2021}{2029}-\frac{180}{2029} i$
- $\frac{2-45 i}{45+2 i}=-i$


## Another Factoring Example (cont'd)

- Now we need to use either $2+45 i$ or $45+2 i$ since $N(2+45 i)=N(45+2 i)=2029$
- $\frac{2-45 i}{2+45 i}=\frac{-2021}{2029}-\frac{180}{2029} i$
- $\frac{2-45 i}{45+2 i}=-i$
- So $736-1650 i=(1+i)^{8}(45+2 i)(23)(-i)$


## Factoring Gaussian Integers (cont'd)

- needed a way to factor Gaussian Integers efficiently
- developed a Factoring Algorithm
- idea:
$\rightarrow$ take norm of Gaussian integer
$\rightarrow$ factor it
$\rightarrow$ identity if it is a power of $(1+i)$ or is of the form $4 k+1$ or $4 k+3$
$\rightarrow$ rewrite factors accordingly
$\rightarrow$ divide factors out of original Gaussian integer until you are left with a unit

Question: Are there amicable pairs in the integers that are also amicable in the Gaussian integers?

Consider the smallest pair in $\mathbb{Z}$ mentioned above $(220,284)$, recall
in $\mathbb{Z}, \begin{cases}220 & =2^{2} \cdot 5 \cdot 11 \\ 284 & =2^{2} \cdot 71\end{cases}$
but
in $\mathbb{Z}_{i}, \begin{cases}220 & =(1+i)^{4}(1+2 i)(2+i)(11)(i) \\ 284 & =(1+i)^{4}(71)(-1)\end{cases}$

Applying the complex sum of divisors function, we have:

$$
\begin{aligned}
\sigma^{\star}(220)= & -672-144 i \\
& \text { and } \\
\sigma^{\star}(284) & =-288+360 i
\end{aligned}
$$

So the smallest pair in the integers is not amicable in the Gaussian integers!

Theorem 1. Let $\sigma^{\star}$ denote the complex sum of divisors function. Let $n$ be an integer greater than or equal to 1 . Then,

$$
\sigma^{\star}\left(2^{n}\right)=(-1)\binom{n+4}{2} 2^{n}+(-1)\binom{n+3}{2}_{\left(2^{n}\right.}+(-1)\binom{n+3}{2} i
$$

Proof by induction!

This implies that $\sigma^{\star}\left(2^{n}\right)=x+y i$ where $y \neq 0$.

Theorem 2. There are no $(2,1)$ pairs of the form $\left(2^{n} p q, 2^{n} r\right)$ in $\mathbb{Z}$ that are also amicable in $\mathbb{Z}_{i}$

The idea is to show $\sigma^{\star}\left(2^{a} r\right)-2^{a} r=c+d i$ with $d \neq 0$.

Note the relationship between $p, q$, and $r$ :

$$
\begin{aligned}
r & =(p+1)(q+1)-1 \\
& =p q+p+q
\end{aligned}
$$

## Proof (Case 1): Let $p=4 k+3$ and $q=4 I+3$, then

$$
\begin{aligned}
r & =p q+p+q \\
& =(4 k+3)(4 l+3)+(4 k+3)+(4 l+3) \\
& =4(4 k I+4 k+4 l+3)+3 \\
& =4 m+3
\end{aligned}
$$

Proof (Case 1): Let $p=4 k+3$ and $q=4 I+3$, then

$$
\begin{aligned}
r & =p q+p+q \\
& =(4 k+3)(4 I+3)+(4 k+3)+(4 I+3) \\
& =4(4 k I+4 k+4 I+3)+3 \\
& =4 m+3
\end{aligned}
$$

So we have

$$
\begin{aligned}
\sigma^{\star}\left(2^{a} r\right)-2^{a} r & =\sigma^{\star}\left(2^{a}\right) \sigma^{\star}(r)-2^{a} r \\
& =(x+y i)(r+1)-2^{a} r \\
& =\left(x(r+1)-2^{a} r\right)+y(r+1) i \\
& =c+d i
\end{aligned}
$$

All four cases can be summarized by the following table:

| $p$ | $q$ | $p q+p+q$ |
| :---: | :---: | :---: |
| $4 k+1$ | $4 k+1$ | $4 k+3$ |
| $4 k+3$ | $4 k+3$ | $4 k+3$ |
| $4 k+1$ | $4 k+3$ | $4 k+3$ |
| $4 k+3$ | $4 k+1$ | $4 k+3$ |

So there are no $(2,1)$ pairs of the form $\left(2^{n} p q, 2^{n} r\right) \in \mathbb{Z}$ that are also amicable in $\mathbb{Z}_{i}$

Theorem 3. Let $(m, n)$ be amicable in $\mathbb{Z}$. If $m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}$ and $n=q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \cdot \ldots \cdot q_{s}^{\beta_{s}}$ where all of the $p_{i}$ and $q_{j}$ are of the form $4 k+3$, then $(m, n)$ is amicable in $\mathbb{Z}_{i}$

## Proof.

Consider $m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ and $n=q_{1}^{\beta_{1}} \cdot q_{2}^{\beta_{2}} \cdot \ldots \cdot q_{t}^{\beta_{t}}$. Since each $p_{i}$ is of the form $4 k+3$ the prime factorization of $m$ in the Gaussian integers is the same as its factorization in the integers. But $(m, n)$ is amicable in $\mathbb{Z}$, so:

$$
\begin{aligned}
\sigma^{\star}(m)-m & =\sigma(m)-m \\
& =n
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma^{\star}(n)-n & =\sigma(n)-n \\
& =m
\end{aligned}
$$

Hence $(m, n)$ is also amicable in $\mathbb{Z}_{i}$.

Smallest pair satisfying this criteria was discovered by TeRiele in 1995.
$\left\{\begin{array}{l}294706414233=3^{4} \cdot 7^{2} \cdot 11 \cdot 19 \cdot 47 \cdot 7559 \\ 305961592167=3^{4} \cdot 7 \cdot 11 \cdot 19 \cdot 971 \cdot 2659\end{array}\right.$

## Other examples of Theorem 3

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
111259153519361=3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 23 \cdot 367 \cdot 467 \cdot 587 \\
1118172210128127
\end{array}=3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 23 \cdot 3023 \cdot 33487\right.
\end{array}\right\} \begin{aligned}
& \begin{cases}14435885714987583 & =3^{4} \cdot 7^{2} \cdot 11 \cdot 19 \cdot 251 \cdot 2243 \cdot 30911 \\
1449901295908097 & =3^{4} \cdot 7^{2} \cdot 11 \cdot 19 \cdot 11087 \cdot 1576511\end{cases} \\
& \begin{cases}8062452835794819 & =3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 23 \cdot 71 \cdot 79 \cdot 179 \cdot 727 \\
8554426893254781 & =3^{4} \cdot 7^{2} \cdot 11^{2} \cdot 103 \cdot 222 \cdot 479 \cdot 1619\end{cases}
\end{aligned}
$$

Question: Are there amicable pairs in the Gaussian integers? How do we find "Imaginary Friendly Numbers?"

## Formula for $2^{n}$

| n | $\sigma^{\star}\left(2^{n}\right)$ |
| :---: | :---: |
| 1 | $2+3 \mathrm{i}$ |
| 2 | $-4+5 \mathrm{i}$ |
| 3 | $-8-7 \mathrm{i}$ |
| 4 | $16-15 \mathrm{i}$ |
| 5 | $32+33 \mathrm{i}$ |
| 6 | $-64+65 \mathrm{i}$ |
| 7 | $-128-127 \mathrm{i}$ |
| 8 | $256-255 \mathrm{i}$ |
| 9 | $512+513 \mathrm{i}$ |
| 10 | $-1024+1025 \mathrm{i}$ |

## Formula for $2^{n}$ (cont'd)

- The above table follows the pattern $\pm \sigma^{\star}\left(2^{n}\right)= \pm 2^{n} \pm\left(2^{n} \pm 1\right) i$
- The first $\pm$ follows the pattern,,,,,,,$+--++-- \ldots$
- The second $\pm$ follows the pattern,,,,,,,,$++--++-- \ldots$
- The patterns in this sequence can be found from Pascal's triangle with binomial coefficients of the form $\binom{k}{2}$ put as exponents on -1

Theorem 1. Let $\sigma^{\star}$ denote the complex sum of divisors function. Let $n$ be an integer greater than or equal to 1 . Then,

$$
\left.\sigma^{\star}\left(2^{n}\right)=(-1)\left(\begin{array}{c}
\binom{n+4}{2}
\end{array} 2^{n}+(-1)\right)_{\binom{n+3}{2}}^{\left(2^{n}\right.}+(-1)^{\binom{n+3}{2}}\right) i
$$

Proof by induction!

## Computer Search for Amicable Pairs in $\mathbb{Z}_{i}$

- looked for pairs with common factors
- general search
- returned unfactored numbers of the form $a+b i$


## Computer Search for Amicable Pairs in $\mathbb{Z}_{i}$

$$
\begin{aligned}
& \text { For }[a=1, a<1000000, a++, \text { Print }[" a=", a] ; \\
& \text { For }\left[b=1, b<100000, b++, x=(1+i)^{8} \cdot(a+b i) ;\right. \\
& y=\text { DivisorSigma }[1, x, \text { GaussianIntegers } \rightarrow \text { True }]-x \text {; } \\
& z=\text { DivisorSigma [1,y, GaussianIntegers } \rightarrow \text { True }]-y \text {; } \\
& \text { If }[z==x, \text { Print }[x, " \text { and " }, y, " \text { are amicable", } \\
& \text { "where the first number has a factor of } \left.\left.\left.\left.(1+i)^{8}\right]\right]\right]\right]
\end{aligned}
$$

Some Results

$$
\begin{aligned}
& \left\{\begin{array}{l}
-21246-8807 i=(1+2 i)(1+4 i)(6+11 i)(2+3 i)(45+32 i)(-i) \\
5166-26953 i=(1+2 i)(1+4 i)(6+11 i)(41+234 i)
\end{array}\right. \\
& \left\{\begin{array}{l}
736-16560 i=(1+i)^{8}(45+2 i)(23)(-i) \\
17648+768 i=(1+i)^{8}(1103+48 i)
\end{array}\right. \\
& \left\{\begin{array}{l}
-1036624+495520 i=(1+i)^{8}(2+27 i)(28+25 i)(63+32 i) \\
536656+1058336 i=(1+i)^{8}(2+27 i)(1055+2528 i)(-i)
\end{array}\right.
\end{aligned}
$$

## Some Results cont'd

$$
\begin{aligned}
& \left\{\begin{array}{l}
716246+6020977 i=(1+2 i)(21+10 i)(137+180 i)(439+270 i)(-i) \\
578954-766097 i=(1+2 i)^{2}(1+4 i)(1+24 i)(31+26 i)(19+44 i)(-i)
\end{array}\right. \\
& \left\{\begin{array}{l}
-6880+4275 i=(3+2 i)^{3}(1+2 i)(2+i)(2+7 i)(17+2 i)(-i) \\
-8547+4606 i=(1+2 i)(2+3 i)(1+4 i)(29+30 i)(7)(-i)
\end{array}\right. \\
& \left\{\begin{array}{l}
391696-737328 i=(1+i)^{9}(1+2 i)^{3}(2+5 i)(1+4 i)(147+22 i)(-i) \\
258064-702992 i=(1+i)^{9}(1+2 i)(2+5 i)(1+6 i)(3+10 i)(28+33 i)(-
\end{array}\right.
\end{aligned}
$$

## New Amicable Pairs in $\mathbb{Z}_{i}$ Organized by Type

| Type | Number Found |
| :---: | :---: |
| $(2,1)$ | 3 |
| $(2,2)$ | 19 |
| $(3,2)$ | 43 |
| $(3,3)$ | 13 |
| $(4,2)$ | 3 |
| $(4,3)$ | 5 |
| $(4,4)$ | 4 |
| $(5,3)$ | 4 |
| $(5,5)$ | 1 |
| exotic | 15 |
| Total | 110 |

New Amicable Pairs in $\mathbb{Z}_{i}$ Organized by Common Factor

| Common Factor | Number Found |
| :---: | :---: |
| $(1+i)^{7}$ | 22 |
| $(1+i)^{8}$ | 12 |
| $(1+i)^{9}$ | 4 |
| $(1+i)^{m}(1+2 i)^{n}$ | 5 |
| $(1+2 i)$ | 12 |
| $(1+2 i)^{2}$ | 15 |
| $(1+2 i)^{3}$ | 11 |
| $(1+2 i)^{4}$ | 1 |
| $(1+2 i)^{m}(1+4 i)^{n}$ | 13 |
| Total | 95 |

Natural Extension: Gaussian aliquot sequences

- Let $s(n)=\sigma(n)-n$, then

$$
s^{0}(n)=n, s^{1}(n)=s(n), s^{2}(n)=s(s(n)), \ldots
$$

is called an aliquot sequence

- classified according to how the sequence terminates (bounded, amicable, sociable, perfect, aspiring....)


## Natural Extension (cont'd)

- Let $s^{\star}(n)=\sigma^{\star}(n)-n$. Then

$$
s_{0}^{\star}(n)=n, s_{1}^{\star}(n)=s^{\star}(n), s_{2}^{\star}(n)=s^{\star}\left(s^{\star}(n)\right), \ldots
$$

is a Gaussian aliquot sequence
"The only application or use for these numbers is the original one- you insert a pair of amicable pairs into a pair of amulets, of which you wear one yourself and give the other to your beloved!"

- John Conway


## Summary

- criteria for other pairs in $\mathbb{Z}$ that will always carry over to $\mathbb{Z}_{i}$
- finding pairs of certain types in $\mathbb{Z}_{i}$
- natural extension: Gaussian aliquot sequences

