Gaussian Amicable Pairs: "Friendly Imaginary Numbers"

Patrick Costello and Ranthony Clark Eastern Kentucky University Richmond, Kentucky

May 1, 2013

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: *"Friendly Imaginar*y

May 1, 2013 1 / 48

Question: What are amicable pairs in the integers, i.e. how do we define "real friendly numbers?"

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sum of Divisors Function

- used to calculate the sum of the positive divisors of a given integer n, denoted $\sigma(n)$
- if d is a divisor of n then, $\sigma(n) = \sum_{d|n} d$

Sum of Divisors Function

 used to calculate the sum of the positive divisors of a given integer n, denoted σ(n)

• if
$$d$$
 is a divisor of n then, $\sigma(n) = \sum_{d|n} d$

• ex.

$$\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12$$

= 28

→ Ξ →

• multiplicative: $\sigma(mn) = \sigma(m)\sigma(n)$ where (m, n) = 1

Image: A match a ma

- multiplicative: $\sigma(mn) = \sigma(m)\sigma(n)$ where (m, n) = 1
- if p is a prime, then $\sigma(p) = p + 1$

< 🗇 🕨 < 🖃 🕨

- multiplicative: $\sigma(mn) = \sigma(m)\sigma(n)$ where (m, n) = 1
- if p is a prime, then $\sigma(p) = p + 1$
- if p is prime and e is any positive integer $\sigma(p^e) = \frac{p^{e+1}-1}{p-1}$

- multiplicative: $\sigma(mn) = \sigma(m)\sigma(n)$ where (m, n) = 1
- if p is a prime, then $\sigma(p) = p + 1$
- if p is prime and e is any positive integer $\sigma(p^e) = \frac{p^{e+1}-1}{p-1}$ • if $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_r^{\alpha_r}$, then $\sigma(n) = \prod_{i=1}^r \frac{p_i^{(\alpha_i+1)}-1}{p_i-1}$

ex.

$$\sigma(12) = \sigma(2^2)\sigma(3)$$

= $\left(\frac{2^{2+1}-1}{2-1}\right)(3+1)$
= (7)(4)
= 28

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 5 / 48

- two integers *m* and *n* are said to be <u>amicable</u> if $\sigma(m) m = n$ and $\sigma(n) n = m$
- proper divisors of one integer equals the proper divisors of the other
- (m, n) is called an *amicable pair*

ex. The smallest amicable pair in \mathbb{Z} is (220, 284)

$$\sigma(220) = \sigma(2^2 \cdot 5 \cdot 11)$$

= $\sigma(2^2)\sigma(5)\sigma(11)$
= $\left(\frac{2^3 - 1}{2 - 1}\right)(5 + 1)(11 + 1)$
= (7)(6)(12)
= 504

$$\sigma(220) - 220 = 504 - 220$$

= 284

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 7 / 48

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\sigma(284) = \sigma(2^2 \cdot 71) = \sigma(2^2)\sigma(71) = \left(\frac{2^3 - 1}{2 - 1}\right)(71 + 1) = (7)(72) = 504$$

and

$$\sigma(284) - 284 = 504 - 284$$

= 220

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 8 / 48

Pairs of a Certain Type

Consider again the pair (220, 284), then $\begin{cases} 220 &= 2^2 \cdot 5 \cdot 11 \\ 284 &= 2^2 \cdot 71 \end{cases}$

So this pair is of the form (Epq, Er) where E is a common factor of both numbers and p, q, and r are distinct primes.

We call pairs of this type (2, 1) pairs.

Pairs of a Certain Type (cont'd)

There are also (2,2) pairs, (4,3) pairs, (5,1) pairs, etc.

Consider the pair (12285, 14595), then
$$\begin{cases} 12285 &= 3^3 \cdot 5 \cdot 7 \cdot 13 \\ 14595 &= 3 \cdot 5 \cdot 7 \cdot 139 \end{cases}$$

We call pairs of this type *erotic* pairs.

Question: What are Gaussian amicable pairs, i.e. how do we define "imaginary friendly numbers?"

• Gaussian integers are denoted \mathbb{Z}_i , where $\mathbb{Z}_i = \{a + bi \mid a, b \in \mathbb{Z}\}$

Image: A match a ma

3

12 / 48

- Gaussian integers are denoted \mathbb{Z}_i , where $\mathbb{Z}_i = \{a + bi \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_i$, then ϵ is a <u>unit</u> if there exists $z \in \mathbb{Z}_i$ such that $\epsilon \cdot z = 1$

- Gaussian integers are denoted \mathbb{Z}_i , where $\mathbb{Z}_i = \{a + bi \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_i$, then ϵ is a <u>unit</u> if there exists $z \in \mathbb{Z}_i$ such that $\epsilon \cdot z = 1$
- units in \mathbb{Z}_i are given by the set: $\{1, -1, i, -i\}$

- Gaussian integers are denoted \mathbb{Z}_i , where $\mathbb{Z}_i = \{a + bi \mid a, b \in \mathbb{Z}\}$
- If $\epsilon \in \mathbb{Z}_i$, then ϵ is a <u>unit</u> if there exists $z \in \mathbb{Z}_i$ such that $\epsilon \cdot z = 1$
- units in \mathbb{Z}_i are given by the set: $\{1, -1, i, -i\}$
- Let $p \in \mathbb{Z}_i$ where p is not a unit. The p is <u>prime</u> if for every $a, b \in \mathbb{Z}_i$, p = ab implies that either a or b is a unit

・ 同 ト ・ 三 ト ・ 三 ト

• the <u>norm</u> of a complex number z = a + bi, denoted N(z) is defined by, $N(z) = a^2 + b^2$

- the <u>norm</u> of a complex number z = a + bi, denoted N(z) is defined by, $N(z) = a^2 + b^2$
- N(z) is completely multiplicative, i.e. N(a)N(b) = N(ab)

- the <u>norm</u> of a complex number z = a + bi, denoted N(z) is defined by, $N(z) = a^2 + b^2$
- N(z) is completely multiplicative, i.e. N(a)N(b) = N(ab)
- if $N(z) = 1 \iff z$ is a unit in \mathbb{Z}_i

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

- the <u>norm</u> of a complex number z = a + bi, denoted N(z) is defined by, $N(z) = a^2 + b^2$
- N(z) is completely multiplicative, i.e. N(a)N(b) = N(ab)
- if $N(z) = 1 \iff z$ is a unit in \mathbb{Z}_i
- if N(z) = p where p is prime in \mathbb{Z} , then z is prime in \mathbb{Z}_i

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Complex Sum of Divisors Function

 Let η be a Gaussian integer such that η = ε ∏ π_i^{k_i} where ε is a unit and each π_i lies in the first quadrant, then

$$\sigma^{\star}(\eta) = \prod \frac{\pi_i^{k_i+1}-1}{\pi_i-1}$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

Amicable Pairs in the Gaussian Integers

- two Gaussian integers *m* and *n* are said to be amicable if $\sigma^*(m) m = n$ and $\sigma^*(n) n = m$
- in order to calculate σ^{*}(η) where η ∈ Z_i then we must first factor η into its unique factorization up to order and units so that all of the factors of η lie in the first quadrant.

Important Facts

- Let p be an odd prime integer, then p is of the form 4k + 1 or 4k + 3
- If p is of the form 4k + 3, then p is prime in \mathbb{Z}_i
- If p is of the form 4k + 1, then p can be written as the sum of squares (i.e. $p = a^2 + b^2$)

Important Facts

- Let p be an odd prime integer, then p is of the form 4k + 1 or 4k + 3
- If p is of the form 4k + 3, then p is prime in \mathbb{Z}_i
- If p is of the form 4k + 1, then p can be written as the sum of squares (i.e. $p = a^2 + b^2$)
- if p is an odd prime of the form 4k + 1 then p can be written as a Gaussian integer c + di where N(c + di) = p

Important Facts (cont'd)

- 2^n in \mathbb{Z} factors as $(1+i)^{2n}$ in \mathbb{Z}_i
- If the norm of a Gaussian integer z includes a power of 2ⁿ then (1 + i)ⁿ is a factor of z

Factoring Gaussian Integers

Consider -46 + 20i. Then we have:

$$-46 + 20i = (1 + i)^{2}(1 + 4i)(1 + 6i)(-i)$$

= (1 + i)(1 - i)(1 + 4i)(1 + 6i)
= (1 + i)^{2}(4 - i)(1 + 6i)
= (1 + i)^{2}(1 + 4i)(6 - i)
= (1 + i)^{2}(-4 + i)(1 + 6i)(-1)
:

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 18 / 48

3

-

•
$$N(-46+20i) = (-46)^2 + 20^2 = 2516$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

•
$$N(-46+20i) = (-46)^2 + 20^2 = 2516$$

• $2516 = 2^2 \cdot 17 \cdot 37$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

Image: A math a math

•
$$N(-46+20i) = (-46)^2 + 20^2 = 2516$$

- $2516 = 2^2 \cdot 17 \cdot 37$
- this means there are Gaussian integers a + bi and c + di where N(a + bi) = 17 and N(c + di) = 37

• In this case we could have a + bi be any of:

$$\{1+4i, 1-4i, -1-4i, -1+4i, 4+i, 4-i, -4-i, -4+i\}$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: *"Friendly Imaginary*

• • • • • • • • • • • •

• In this case we could have *a* + *bi* be any of:

$$\{1+4i, 1-4i, -1-4i, -1+4i, 4+i, 4-i, -4-i, -4+i\}$$

- Need only 1 + 4i or 4 + i
- Similarly, for c + di we use either 1 + 6i or 6 + i.

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

• In this case we could have *a* + *bi* be any of:

$$\{1+4i, 1-4i, -1-4i, -1+4i, 4+i, 4-i, -4-i, -4+i\}$$

- Need only 1 + 4i or 4 + i
- Similarly, for c + di we use either 1 + 6i or 6 + i.

•
$$-46 + 20i = (1 + i)^2(1 + 4i)(1 + 6i)(-i)$$

Consider: 736 - 16560*i*

• $N(736 - 16560i) = (736)^2 + (-16560)^2 = 274775296$

- 34

イロト 不得下 イヨト イヨト

Consider: 736 - 16560*i*

- $N(736 16560i) = (736)^2 + (-16560)^2 = 274775296$
- $274775296 = 2^8 \cdot 23^2 \cdot 2029$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

21 / 48

Consider: 736 – 16560*i*

- $N(736 16560i) = (736)^2 + (-16560)^2 = 274775296$
- $274775296 = 2^8 \cdot 23^2 \cdot 2029$
- Note: $2^2 + 45^2 = 2029$

- 4 回 ト 4 三 ト - 三 - シックマ

Consider: 736 – 16560*i*

- $N(736 16560i) = (736)^2 + (-16560)^2 = 274775296$
- $274775296 = 2^8 \cdot 23^2 \cdot 2029$
- Note: $2^2 + 45^2 = 2029$

•
$$\frac{736 - 16560i}{(1+i)^8} = 46 - 1035i$$

- 4 回 ト 4 三 ト - 三 - シックマ

Consider: 736 – 16560*i*

- $N(736 16560i) = (736)^2 + (-16560)^2 = 274775296$
- $274775296 = 2^8 \cdot 23^2 \cdot 2029$
- Note: $2^2 + 45^2 = 2029$

•
$$\frac{736 - 16560i}{(1+i)^8} = 46 - 1035i$$

•
$$\frac{46-1035i}{23}=2-45i$$

- 4 回 ト 4 三 ト - 三 - シックマ

• Now we need to use either 2 + 45i or 45 + 2i since N(2 + 45i) = N(45 + 2i) = 2029

→ Ξ →

• Now we need to use either 2 + 45i or 45 + 2i since N(2 + 45i) = N(45 + 2i) = 2029

• $\frac{2-45i}{2+45i} = \frac{-2021}{2029} - \frac{180}{2029}i$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

• Now we need to use either 2 + 45i or 45 + 2i since N(2 + 45i) = N(45 + 2i) = 2029

•
$$\frac{2-45i}{2+45i} = \frac{-2021}{2029} - \frac{180}{2029}i$$

•
$$\frac{2-45i}{45+2i} = -i$$

→ Ξ →

• Now we need to use either 2 + 45i or 45 + 2i since N(2 + 45i) = N(45 + 2i) = 2029

•
$$\frac{2-45i}{2+45i} = \frac{-2021}{2029} - \frac{180}{2029}i$$

• $\frac{2-45i}{2029} = -i$

•
$$\frac{1}{45+2i} =$$

• So $736 - 1650i = (1 + i)^8(45 + 2i)(23)(-i)$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

- needed a way to factor Gaussian Integers efficiently
- developed a Factoring Algorithm
- idea:
 - ightarrow take norm of Gaussian integer
 - \rightarrow factor it
 - ightarrow identity if it is a power of (1+i) or is of the form 4k+1 or 4k+3
 - \rightarrow rewrite factors accordingly

 \rightarrow divide factors out of original Gaussian integer until you are left with a unit

<u>Question</u>: Are there amicable pairs in the integers that are also amicable in the Gaussian integers?

Consider the smallest pair in \mathbb{Z} mentioned above (220, 284), recall

in
$$\mathbb{Z}$$
,
$$\begin{cases} 220 &= 2^2 \cdot 5 \cdot 11 \\ 284 &= 2^2 \cdot 71 \end{cases}$$

but

in
$$\mathbb{Z}_i$$
,
$$\begin{cases} 220 &= (1+i)^4 (1+2i)(2+i)(11)(i) \\ 284 &= (1+i)^4 (71)(-1) \end{cases}$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

A D > A B > A B > A

Applying the complex sum of divisors function, we have:

$$\sigma^{\star}(220) = -672 - 144i$$

and

$$\sigma^{\star}(284) = -288 + 360i$$

So the smallest pair in the integers is <u>not</u> amicable in the Gaussian integers!

Theorem 1. Let σ^* denote the complex sum of divisors function. Let n be an integer greater than or equal to 1. Then,

$$\sigma^{*}(2^{n}) = (-1)^{\binom{n+4}{2}}2^{n} + (-1)^{\binom{n+3}{2}}(2^{n} + (-1)^{\binom{n+3}{2}})i$$

Proof by induction!

This implies that $\sigma^*(2^n) = x + yi$ where $y \neq 0$.

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 27 / 48

Theorem 2. There are no (2,1) pairs of the form $(2^npq, 2^nr)$ in \mathbb{Z} that are also amicable in \mathbb{Z}_i

The idea is to show $\sigma^{\star}(2^{a}r) - 2^{a}r = c + di$ with $d \neq 0$.

Note the relationship between p, q, and r:

$$r = (p+1)(q+1) - 1$$
$$= pq + p + q$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

イロト 不得下 イヨト イヨト

Proof (Case 1): Let p = 4k + 3 and q = 4l + 3, then

$$r = pq + p + q$$

= (4k + 3)(4l + 3) + (4k + 3) + (4l + 3)
= 4(4kl + 4k + 4l + 3) + 3
= 4m + 3

イロト イポト イヨト イヨト

Proof (Case 1): Let p = 4k + 3 and q = 4l + 3, then

$$r = pq + p + q$$

= (4k + 3)(4l + 3) + (4k + 3) + (4l + 3)
= 4(4kl + 4k + 4l + 3) + 3
= 4m + 3

So we have

$$\sigma^{*}(2^{a}r) - 2^{a}r = \sigma^{*}(2^{a})\sigma^{*}(r) - 2^{a}r$$

= $(x + yi)(r + 1) - 2^{a}r$
= $(x(r + 1) - 2^{a}r) + y(r + 1)i$
= $c + di$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 29 / 48

3

イロト イポト イヨト イヨト

All four cases can be summarized by the following table:

р	q	pq+p+q
4k+1	4k+1	4k+3
4k+3	4k+3	4k+3
4k+1	4k+3	4k+3
4k+3	4k+1	4k+3

So there are no (2,1) pairs of the form $(2^n pq, 2^n r) \in \mathbb{Z}$ that are also amicable in \mathbb{Z}_i

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 30 / 48

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem 3. Let (m, n) be amicable in \mathbb{Z} . If $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_r^{\alpha_r}$ and $n = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdot \ldots \cdot q_s^{\beta_s}$ where all of the p_i and q_j are of the form 4k + 3, then (m, n) is amicable in \mathbb{Z}_i

Proof.

Consider $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_s^{\alpha_s}$ and $n = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdot \ldots \cdot q_t^{\beta_t}$. Since each p_i is of the form 4k + 3 the prime factorization of m in the Gaussian integers is the same as its factorization in the integers. But (m, n) is amicable in \mathbb{Z} , so:

$$\sigma^{\star}(m) - m = \sigma(m) - m$$
$$= n$$

and

$$\sigma^*(n) - n = \sigma(n) - n$$
$$= m$$

Hence (m, n) is also amicable in \mathbb{Z}_i .

Smallest pair satisfying this criteria was discovered by TeRiele in 1995.

```
\begin{cases} 294706414233 = 3^4 \cdot 7^2 \cdot 11 \cdot 19 \cdot 47 \cdot 7559 \\ 305961592167 = 3^4 \cdot 7 \cdot 11 \cdot 19 \cdot 971 \cdot 2659 \end{cases}
```

Other examples of Theorem 3

 $\begin{cases} 1111259153519361 &= 3^4 \cdot 7^2 \cdot 11^2 \cdot 23 \cdot 367 \cdot 467 \cdot 587 \\ 1118172210128127 &= 3^4 \cdot 7^2 \cdot 11^2 \cdot 23 \cdot 3023 \cdot 33487 \end{cases}$

 $\begin{cases} 14435885714987583 &= 3^4 \cdot 7^2 \cdot 11 \cdot 19 \cdot 251 \cdot 2243 \cdot 30911 \\ 1449901295908097 &= 3^4 \cdot 7^2 \cdot 11 \cdot 19 \cdot 11087 \cdot 1576511 \end{cases}$

 $\begin{cases} 8062452835794819 &= 3^4 \cdot 7^2 \cdot 11^2 \cdot 23 \cdot 71 \cdot 79 \cdot 179 \cdot 727 \\ 8554426893254781 &= 3^4 \cdot 7^2 \cdot 11^2 \cdot 103 \cdot 222 \cdot 479 \cdot 1619 \end{cases}$

<u>Question</u>: Are there amicable pairs in the Gaussian integers? How do we find "Imaginary Friendly Numbers?"

- 4 ≣ ▶

Formula for 2^n

n	$\sigma^{\star}(2^n)$
1	2+3i
2	-4+5i
3	-8-7i
4	16-15i
5	32+33i
6	-64+65i
7	-128-127i
8	256-255i
9	512+513i
10	-1024+1025i

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 36 / 48

(日) (四) (三) (三) (三)

Formula for 2^n (cont'd)

- The above table follows the pattern $\pm \sigma^{\star}(2^n) = \pm 2^n \pm (2^n \pm 1)i$
- The first \pm follows the pattern $+,-,-,+,+,-,-,\ldots$
- The second \pm follows the pattern $+,+,-,-,+,+,-,-,\ldots$
- The patterns in this sequence can be found from Pascal's triangle with binomial coefficients of the form $\binom{k}{2}$ put as exponents on -1

- ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ — 圖

Theorem 1. Let σ^* denote the complex sum of divisors function. Let n be an integer greater than or equal to 1. Then,

$$\sigma^{*}(2^{n}) = (-1)^{\binom{n+4}{2}}2^{n} + (-1)^{\binom{n+3}{2}}(2^{n} + (-1)^{\binom{n+3}{2}})i$$

Proof by induction!

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

Computer Search for Amicable Pairs in \mathbb{Z}_i

· looked for pairs with common factors

• general search

• returned unfactored numbers of the form a + bi

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

Computer Search for Amicable Pairs in \mathbb{Z}_i

For
$$[a = 1, a < 100000, a + +, Print ["a = ", a];$$

For $[b = 1, b < 100000, b + +, x = (1 + i)^8 \cdot (a + bi);$
 $y =$ DivisorSigma $[1, x,$ GaussianIntegers \rightarrow True $] -x;$
 $z =$ DivisorSigma $[1, y,$ GaussianIntegers \rightarrow True $] -y;$
If $[z == x,$ Print $[x,$ " and ", y," are amicable",
"where the first number has a factor of $(1 + i)^8]]]]$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

-

A D > A B > A B > A

Some Results

 $\begin{cases} -21246 - 8807i = (1+2i)(1+4i)(6+11i)(2+3i)(45+32i)(-i) \\ 5166 - 26953i = (1+2i)(1+4i)(6+11i)(41+234i) \end{cases}$

$$\begin{cases} 736 - 16560i = (1+i)^8 (45+2i)(23)(-i) \\ 17648 + 768i = (1+i)^8 (1103+48i) \end{cases}$$

1

 $\begin{cases} -1036624 + 495520i = (1+i)^8(2+27i)(28+25i)(63+32i) \\ 536656 + 1058336i = (1+i)^8(2+27i)(1055+2528i)(-i) \end{cases}$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

Some Results cont'd

 $\begin{cases} 716246 + 6020977i = (1+2i)(21+10i)(137+180i)(439+270i)(-i) \\ 578954 - 766097i = (1+2i)^2(1+4i)(1+24i)(31+26i)(19+44i)(-i) \end{cases}$

$$\begin{bmatrix} -6880 + 4275i = (3+2i)^3(1+2i)(2+i)(2+7i)(17+2i)(-i) \\ -8547 + 4606i = (1+2i)(2+3i)(1+4i)(29+30i)(7)(-i) \end{bmatrix}$$

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

New Amicable Pairs in \mathbb{Z}_i Organized by Type

Туре	Number Found
(2,1)	3
(2,2)	19
(3,2)	43
(3,3)	13
(4,2)	3
(4,3)	5
(4,4)	4
(5,3)	4
(5,5)	1
exotic	15
Total	110

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 43 / 48

æ

New Amicable Pairs in \mathbb{Z}_i Organized by Common Factor

Common Factor	Number Found
$(1+i)^7$	22
$(1+i)^{8}$	12
$(1+i)^9$	4
$(1+i)^m(1+2i)^n$	5
(1 + 2i)	12
$(1+2i)^2$	15
$(1+2i)^3$	11
$(1+2i)^4$	1
$(1+2i)^m(1+4i)^n$	13
Total	95

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 44 / 48

3

・ロト ・ 日 ト ・ 日 ト ・ 日

Natural Extension: Gaussian aliquot sequences

• Let $s(n) = \sigma(n) - n$, then

$$s^{0}(n) = n, s^{1}(n) = s(n), s^{2}(n) = s(s(n)), \dots$$

is called an *aliquot sequence*

• classified according to how the sequence terminates (*bounded, amicable, sociable, perfect, aspiring...*)

Natural Extension (cont'd)

• Let
$$s^*(n) = \sigma^*(n) - n$$
. Then

$$s_0^{\star}(n) = n, s_1^{\star}(n) = s^{\star}(n), s_2^{\star}(n) = s^{\star}(s^{\star}(n)), \dots$$

is a Gaussian aliquot sequence

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

"The only application or use for these numbers is the original one- you insert a pair of amicable pairs into a pair of amulets, of which you wear one yourself and give the other to your beloved!"

- John Conway

• criteria for other pairs in \mathbb{Z} that will always carry over to \mathbb{Z}_i

• finding pairs of certain types in \mathbb{Z}_i

• natural extension: Gaussian aliquot sequences

Patrick Costello and Ranthony Clark EasternGaussian Amicable Pairs: "Friendly Imaginary

May 1, 2013 48 / 48