Factorization in Polynomial Rings with Zero Divisors

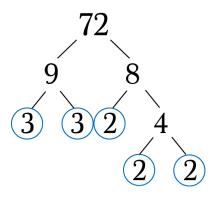
Ranthony A.C. Edmonds Ross Assistant Professor The Ohio State University

NAM Haynes-Granville Browne Session Joint Mathematics Meetings: Baltimore, MD January 18, 2019

Main Goal

How do certain factorization properties of a commutative ring R behave under the polynomial extension R[X]?

Unique Factorization



Fundamental Theorem of Arithmetic (FTA) every integer can be factored uniquely into the product of primes

Unique Factorization

Unique Factorization Domain

every element can be factored uniquely into the product of atoms

Example

Rings with the Unique Factorization Property

- ightharpoons
- ightharpoons
- ightharpoons
- $ightharpoonup \mathbb{Z}[X]$
- ightharpoons \mathbb{Z}_4

 $2 \cdot 2 = 0$ so 2 is called a **zero divisor**

<u>Note:</u> a **domain** is a commutative ring with where 0 is the only zero divisor

Non-Unique Factorization

Consider the ring: $\mathbb{R} + X\mathbb{C}[X]$

<u>in</u>

$$\sqrt{3} + X(2iX^3 + 7X + i)$$

➤ X

$$\qquad \qquad \left(\frac{1+i}{2}\right)X$$

<u>out</u>

- ▶ 3i
- \triangleright 1 + i

Factorization of X^2 in $\mathbb{R} + X\mathbb{C}[X]$

$$X^{2} = X \cdot X$$

$$= (iX)(-iX)$$

$$= (1+i)X\left(\frac{1-i}{2}\right)X$$

$$= (2+i)X\left(\frac{2-i}{5}\right)X$$

$$X^{2} \text{ is divisible by } \{(r+i)X\}$$

half-factorial ring: every factorization of a nonzero nonunit element into atoms has the same length

Non-Unique Factorization

finite factorization ring: every nonzero nonunit has only a finite number of factorizations into atoms

Example

Examples of FFRs

- ▶ any UFR
- ▶ some HFRs, $\mathbb{Z}\sqrt{-5} = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\};$

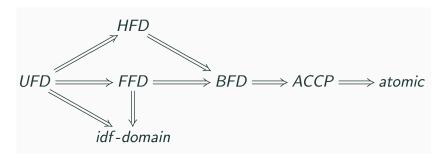
$$6 = 3 \cdot 2 = (1 - \sqrt{-5})(1 + \sqrt{-5})$$

 $ightharpoonup \mathbb{R}[X^2, X^3]$

$$X^6 = X^3 \cdot X^3 = X^2 \cdot X^2 \cdot X^2$$

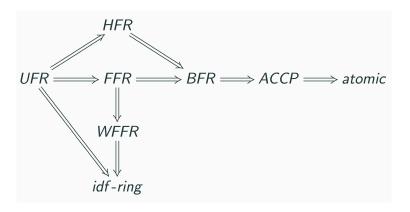
atomic: every nonzero nonunit element can be written as the finite product of atoms

Extension of Factorization Properties to D[X]



Property	UFD	HFD	FFD	idf	BFD	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes
R[X]	yes	no	yes	no	yes	no	no

Extenstion of Factorization Properties to R[X]



Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes	yes
R[X]	no	no	no	no	no	no	no	no

Definition

R is a unique factorization ring (UFR) if R is atomic and every $a \in R^{\#}$ can be factored uniquely into the product of atoms up to order and associates such that if $x = a_1 \cdots a_n = b_1 \cdots b_m$ are two factorizations of nonzero nonunit element x into atoms

- 1. n = m
- 2. $a_i \sim b_i$ for every *i* after a reordering

Theorem

Let R be an integral domain. Then R is a UFD \iff R[X] is a UFD

Question: When is R[X] a UFR where R is an arbitrary commutative ring with zero divisors?

Irreducibles in a Domain

Definitions

- ▶ $a \in D^{\#}$ is <u>irreducible</u> if $a = bc \implies b \in U(R)$ or $c \in U(R)$
- ▶ $a, b \in D^{\#}$ are <u>associated</u>, $a \sim b$, if $a \mid b$ and $b \mid a$, i.e. (a) = (b)

Theorem (The following are equivalent:)

- 1. a is irreducible
- 2. $a = bc \implies a \sim b \text{ or } a \sim c$
- 3. (a) is maximal in Prin(D)

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a) = (b)$
strongly associated	$a \approx b$ if $a = ub$ for some $u \in U(R)$
very strongly associated	$a \cong b \text{ if } (1) \ a \sim b \ \text{and} \ (2) \ a = b = 0$
	or $a \neq 0$ and $a = rb \implies r \in U(R)$

Consider $(0,1) \in \mathbb{Z}_2 \times \mathbb{Z}_2$,

- $ightharpoonup (0,1) \sim (0,1)$ since < (0,1) > = < (0,1) >
- ightharpoonup (0,1) pprox (0,1) since (0,1) = (1,1)(0,1)
- ightharpoonup (0,1)
 ot
 otin (0,1) = (0,1)(0,1)

<u>Note:</u> We say R is **présimplifiable** if all of the associate conditions agree, i.e. if x = xy implies x = 0 or $y \in U(R)$

Irreducibles in Commutative Rings with Zero Divisors

Types of Associate Relations

associated	$a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a) = (b)$
strongly associated	$a \approx b$ if $a = ub$ for some $u \in U(R)$
very strongly associated	$a \cong b \text{ if } (1) \ a \sim b \ \text{and} \ (2) \ a = b = 0$
	or $a \neq 0$ and $a = rb \implies r \in U(R)$

Types of Irreducible Elements

irreducible	$a = bc \implies a \sim b \text{ or } a \sim c$
strongly irreducible	$a = bc \implies a \approx b \text{ or } a \approx c$
very strongly irreducible	$a = bc \implies a \cong b \text{ or } a \cong c$
<i>m</i> -irreducible	(a) is maximal in $Prin(R)$

very strongly associated \Longrightarrow strongly associated \Longrightarrow associated

prime

v.s. irreducible \Longrightarrow m-irreducible \Longrightarrow s. irreducible \Longrightarrow irreducible

p-atomic

v.s. atomic \Longrightarrow *m*-atomic \Longrightarrow s. atomic \Longrightarrow atomic

Types of UFRs

- 1. (α, β) UFR
- 2. Bouvier-Galovich UFR
- 3. Fletcher UFR
- 4. Reduced UFR
- 5. Weak UFR

Properties of X

Theorem (Anderson, Edmonds '18)

- 1. X is irreducible \iff R is indecomposable
- 2. If X is the finite product of n atoms, then R is isomorphic to the finite direct product of n indecomposable rings
- 3. If X is the finite product of atoms, then the factorization of X is unique

Example

In
$$\mathbb{Z}_6[X]$$
, $X = (3X+2)(2X+3) = 6X^2 + 13X + 6 = X$.

So,
$$\mathbb{Z}_6[X] \cong R_1[X] \times R_2[X]$$
 by (2).

Note: $\mathbb{Z}_6[X] \cong \mathbb{Z}_3[X] \times \mathbb{Z}_2[X]$ and 3X + 2 and 2X + 3 are atoms since $3X + 2 \mapsto (2, X)$ and $2X + 3 \mapsto (2X, 1)$

(α, β) -UFRs

Definition

Let $\alpha \in \{$ atomic, strongly atomic, very strongly atomic, m-atomic, p-atomic $\}$ and $\beta \in \{$ isomorphic, strongly isomorphic, very strongly isomorphic $\}$.

Then R is a (α, β) -unique factorization ring if:

- 1. R is α
- 2. any two factorizations of $a \in R^\#$ into atoms of the type to define α are β

<u>Note</u>: For any choice of α and β except $\alpha = p$ -atomic, R is présimplifiable.

▶ R is a unique factorization ring if R is an (α, β) -UFR for some (α, β) except $\alpha = p$ -atomic.

Bouvier-Galovich UFRs

Bouvier UFR	Galovich UFR
• <i>m</i> -irreducible	 very strongly irreducible
associate	• strongly associate
• (<i>m</i> -atomic, isomorphic)-UFR	(very strongly atomic,
	strongly isomorphic)-UFR

Theorem

R is a B-G UFR if R satisfies one of the following:

- 1. R is a UFD
- 2. (R, M) is quasi-local where $M^2 = 0$
- 3. R is a special principal ideal ring (SPIR)

Theorem

R[X] is a B-G UFR \iff R[X] is a UFD

Bouvier-Galovich UFRs

Theorem

R[X] is a B-G UFR \iff R[X] is a UFD

Proof Sketch.

- \rightarrow Let $a, b \in R$ such ab = 0 so that a and b are nonzero
- \rightarrow X, X-a, and X-b are irreducible since R is indecomposable

$$\rightarrow \text{ We have } (X - a)(X - b) = X^2 - (a + b)X + ab$$
$$= X^2 - (a + b)X$$
$$= X(X - (a + b))$$

 \rightarrow A contradiction, so R is a domain and R[X] is a UFD

Reduced UFRs

Reduced Factorizations

reduced	$a \neq a_1 \cdots \hat{a_i} \cdots a_n$ for any $i \in \{1, \dots, n\}$
strongly reduced	$a \neq a_1 \cdots \hat{a_{i_1}} \cdots \hat{a_{i_j}} \cdots a_n$ for any nonempty
	proper subset $\{i_1, \dots, i_j\} \subsetneq \{1, \dots, n\}$.

Example

$$(1,0)=(2,0)(\frac{1}{2},0)(2,0)(\frac{1}{2},0)$$
 in $\mathbb{Q}\times\mathbb{Q}$ is reduced but NOT strongly reduced

Definition

R is a strongly reduced (respectively reduced) UFR if:

- 1. R is atomic
- 2. if $a = a_1 \cdots a_n = b_1 \cdots b_m$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then n = m and after a reordering $a_i \sim b_i$ for $i \in \{1, \dots, n\}$.

Reduced UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] strongly reduced UFR
- 2. R[X] reduced UFR
- 3. R is a UFD or a finite direct product of domains $D_1 \times \cdots \times D_n$ with $n \ge 2$ and each D_i is a UFD (possibly a field) with group of units $U(D_i) = \{1\}$

Note: We need the group of units to be trivial to avoid contradicting that R is strongly reduced.

$$(0,1,\ldots,1)=(0,1,\ldots,1,u,1)(0,1,\ldots,1,v,1)=(0,1,\ldots,1,\ldots,1)$$

Fletcher UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] is a Fletcher UFR,
- 2. R[X] is p-atomic,
- 3. R is a finite direct product of UFDs,
- 4. R[X] is factorial, and
- 5. every regular element of R[X] is a product of principal primes

Note: Fletcher used U-factorizations to solve problems with nontrivial idempotents

$$3 \in \mathbb{Z}_6$$
 is an atom, $3 = 3, 3 = 3 \cdot 3, \dots, 3 = 3^n$

$$\Rightarrow 3 = 3^n \lceil 3 \rceil$$

Weak UFRs

Theorem (Anderson, Edmonds '18)

The following are equivalent:

- 1. R[X] is a weak UFR
- 2. every $f \in R[X]^{\#}$ is a product of weakly primes
- 3. R[X] is atomic and each atom is weakly prime
- 4. R is the finite direct product of UFDs

Note: P is weakly prime if $0 \neq ab \in P$ implies $a \in P$ or $b \in P$

Main Result

Theorem (Anderson, Edmonds '18)

R[X] is a UFR if and only if R is a UFD or isomorphic to the finite direct product of UFDs.

Future Directions

Counterexamples for weaker factorization properties:

$$R(+)N: (r_1, n_1)(r_2, n_2) = (r_1r_2, r_2n_1 + r_1n_2)$$

where R = D a quasi-local domain and N = D/M.

- Characterizations for other factorization properties
- ► Factorization in monoid rings

R[X, M]: polynomials in X with degree in the additive monoid M

- Rational integer-valued polynomials
- Commutative Ring Theory and Topology