Unique Factorization in Polynomial Rings with Zero Divisors

Ranthony A.C. Edmonds PhD Candidate University of Iowa Department of Mathematics

Definition

Two elements $a, b \in D$ where D is an integral domain are **associated**, denoted $a \sim b$ if $a \mid b$ and $b \mid a$, i.e. (a) = (b)

Definition

An element $a \in D$ where D is an integral domain is *irreducible* if a = bc implies $b \in U(R)$ or $c \in U(R)$

Theorem

In an integral domain the following are equivalent:

- 1. a is irreducible
- 2. a = bc implies $a \sim b$ or $a \sim c$
- 3. (a) is maximal in the set of proper principal ideals of D

Definition

- a is **associated** to b in R, $a \sim b$, if (a) = (b)
- a is strongly associated, $a \approx b$, if a = ub for some $u \in U(R)$
- *a* is very strongly associated, $a \cong b$, if (1) $a \sim b$ and (2) a = b = 0 or a = rb implies $r \in U(R)$

very strongly associated \implies strongly associated \implies associated

Definition

- *a* is *irreducible* if a = bc implies $a \sim b$ or $a \sim c$
- *a* is *strongly irreducible* if a = bc implies $a \approx b$ or $a \approx c$
- a is very strongly irreducible if a = bc implies a ≅ b or a ≅ c
- *a* is *m*-*irreducible* if (*a*) is maximal in the set of proper principal ideals

v.s. irreducible \implies *m*-irreducible \implies s. irreducible \implies irreducible

Definition

- *R* is *atomic* if each nonzero nonunit *a* ∈ *R* is a finite product of irreducible elements (atoms)
- *R* is *strongly atomic* each nonzero nonunit *a* ∈ *R* is a finite product of strongly irreducible elements
- *R* is *very strongly atomic* each nonzero nonunit *a* ∈ *R* is a finite product of very strongly irreducible elements
- *R* is *m*-atomic if each nonzero nonunit *a* ∈ *R* is a finite product of *m*-irreducible elements
- *R* is *p*-*atomic* if each nonzero nonunit *a* ∈ *R* is a finite product of prime elements

very strongly associated \implies strongly associated \implies associated

p-atomic \downarrow v.s. atomic \Longrightarrow m-atomic \Longrightarrow s. atomic \Longrightarrow atomic

Definition

- Two factorizations of a nonunit a ∈ R into nonunits
 a = a₁ ··· a_n = b₁ ··· b_m are *isomorphic* if n = m and there exists a permutation σ ∈ S_n such that a_i ~ b_{σ(i)}
- Two factorizations of a nonunit a ∈ R into nonunits
 a = a₁ ··· a_n = b₁ ··· b_m are strongly isomorphic if n = m and there exists a permutation σ ∈ S_n such that a_i ≈ b_{σ(i)}
- Two factorizations of a nonunit $a \in R$ into nonunits $a = a_1 \cdots a_n = b_1 \cdots b_m$ are *very strongly isomorphic* if n = m and there exists a permutation $\sigma \in S_n$ such that $a_i \cong b_{\sigma(i)}$

Definition

- Let α ∈ {atomic, strongly atomic, very strongly atomic, m-atomic, p-atomic} and
- $\beta \in \{\text{isomorphic}, \text{ strongly isomorphic}, \text{ very strongly isomorphic}\}, then$
- R is an (α, β)-unique factorization ring if (1) R is α and (2) any two factorizations of a nonzero, nonunit element into irreducible elements of the type used to define α are β.

(α, β) -UNIQUE FACTORIZATION RINGS

Definition

R is called a *unique factorization ring* if *R* is an (α, β) - unique factorization ring for some (and hence all) (α, β) (except $\alpha = p$ -atomic).

Other Unique Factorization Rings

- Bouvier UFR is an (*m*-atomic, isomorphic)-unique factorization ring
- Galovich UFR is a (very strongly atomic, strongly isomorphic)-unique factorization ring
- Fletcher UFR
- reduced UFR

Definition

An element $f \in R[X]$ is *indecomposable* if f = gh implies $g \approx_{R[X]} a$ or $h \approx_{R[X]} a$ for some $a \in R$

Example 4.2.5 Let $R = \mathbb{Z}[B, C]/(5B, BC, 2C)$ where B, C are indeterminates over \mathbb{Z} . Denote the image of B and C by b, c respectively, so we can write $R = \mathbb{Z}[b, c]$. Note that 10 = (2 + bX)(5 + cX) but 2 + bX and 5 + cX are not strongly associated to any $a \in R$.

Theorem

For a commutative ring R the following are equivalent:

- (1) X is irreducible in R[X]
- (2) X is indecomposable in R[X]
- (3) R is indecomposable

Theorem

Let R be a commutative ring. Then X is a product of n atoms if and only if R is a direct product of n indecomposable rings.

Corollary

When X is a finite product of atoms, the factorization is unique up to order and associates.

Question: Does X^n have unique factorization in R[X]?

Question: Does X^n have unique factorization in R[X]?

Example: X^n does not have unique factorization in $\mathbb{Z}_4[X]$,

•
$$X^2 = X \cdot X = (X+2)(X+2)$$

•
$$X^3 = X \cdot X \cdot X = X(X+2)(X+2)$$

- $X^4 = X \cdot X \cdot X \cdot X = (X^2 + 2)(X^2 + 2)$
- $X^5 = X \cdot X \cdot X \cdot X \cdot X = X(X^2 + 2)(X^2 + 2)$

Let $L(X^n)$ and $I(X^n)$ represent the longest and shortest lengths of a factorization of X^n into atoms in $\mathbb{Z}_4[X]$ and $\rho(X^n) = L(X^n)/I(X^n)$

Theorem

In
$$\mathbb{Z}_4[x]$$
, $L(X^n) = l(X^n)$ if $n = 1$ and for $n > 1$ $L(X^n) = n$,
 $l(X^n) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$ and $\rho(X^n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ n/3 & \text{if } n \text{ is odd} \end{cases}$.

Characterization of Bouvier-Galovich UFR

Given a commutative ring R, R is a Bouvier-Galovich unique factorization ring if R satisfies one of the following:

- (1) R is a unique factorization domain,
- (2) R is a quasi-local with unique maximal ideal M where $M^2 = 0$, or
- (3) R is a special principal ideal ring.

BOUVIER-GALOVICH UNIQUE FACTORIZATION RING

Characterization of Bouvier-Galovich UFR for R[X]

R[X] is a Bouvier-Galovich UFR if and only if R[X] is a UFD.

BOUVIER-GALOVICH UNIQUE FACTORIZATION RING

Characterization of Bouvier-Galovich UFR for R[X]R[X] is a Bouvier-Galovich UFR if and only if R[X] is a UFD.

Proof.

- \rightarrow Let $a, b \in R$ such ab = 0 so that a and b are nonzero
- $\rightarrow X, X a$, and X b are irreducible since R is indecomposable

→ We have
$$(X - a)(X - b) = X^2 - (a + b)X + ab$$

= $X^2 - (a + b)X$
= $X(X - (a + b))$

 \rightarrow A contradiction, so R is a domain and R[X] is a UFD

Characterization of Fletcher UFR

Given a commutative ring R, R is said to be a Fletcher unique factorization ring if and only if it is the finite direct product of unique factorization domains and special principal ideal rings.

Characterization of Fletcher UFR for R[X]

For a commutative ring R, R[X] is a Fletcher UFR if and only if it is the finite direct product of unique factorization domains.

Definition

We say that a commutative ring R is a *factorial ring* if every regular nonunit element of R is a product of (regular) irreducibles and this factorization is unique up to order and associates.

Characterization of a Fletcher UFR for R[X]

For a commutative ring R, the following are equivalent:

- 1. R[X] is a Fletcher UFR
- 2. R[X] is *p*-atomic
- 3. R is finite direct product of UFDs
- 4. R[X] is factorial
- 5. every regular element of R[X] is a product of principal primes

REDUCED RINGS

Definition

- In a commutative ring R, a factorization a = a₁ ⋅ a_n of a nonunit a ∈ R is *reduced* if a ≠ a₁ ⋅ ⋅ â_i ⋅ ⋅ ⋅ a_n for any i ∈ {1, . . . , n}
- In a commutative ring R, a factorization a = a₁ ⋅ a_n of a nonunit a ∈ R is strongly reduced if a ≠ a₁ · · · â_i · · · a_n for any i ∈ {1,..., n}

<u>Example</u>: Consider $\mathbb{Q} \times \mathbb{Q}$, then $(1,0)=(2,0)(\frac{1}{2},0)(2,0)(\frac{1}{2},0)$ is reduced but NOT strongly reduced. Since,

$$(1,0) = (2,0)(\widehat{\frac{1}{2},0})(\widehat{2,0})(\frac{1}{2},0)$$

Definition

A commutative ring *R* is a (*weak*) *strongly reduced unique factorization ring* if:

(1) *R* is atomic, that is, every nonunit of *R* has a strongly reduced factorization into the product of atoms, and (2) for every (*nonzero*) nonunit $a \in R$ with $a = a_1 \cdots a_n$ if there exists another strongly reduced factorization $a = b_1 \cdots b_m$ then n = m and after a reordering $a_i \sim b_i$ for $i = 1, \ldots, n$.

Theorem

For a commutative ring R, the following are equivalent:

- 1. R[X] (weak) strongly reduced UFR
- 2. R[X] (weak) reduced UFR
- R is a UFD or a finite direct product D₁ × ... × D_n where each n ≥ 2 and D_i is a UFD (possibly a field) where the group of units U(D_i) = 1

Let $R^{\#}$ be the set of nonzero nonunits.

- <u>atomic</u> each a ∈ R[#] is a product of a finite number of irreducibles (atoms)
- 2. Ascending Chain Condition on Principal Ideals (ACCP) there does not exist an infinite strictly ascending chain of principal ideals of *R*
- Unique Factorization Ring (UFR) every a ∈ R[#] can be written uniquely as the product of irreducibles up to order and associates
- Half-Factorial Ring (HFR) R is atomic and any two factorizations of a ∈ R[#] into the finite product of irreducibles have the same length

Let $R^{\#}$ be the set of nonzero nonunits.

- 5. Bounded Factorization Ring (BFR) there exists an N(a)for every $a \in R^{\#}$ with $a = a_1 \dots a_n$ where $n \le N(a)$ and no $a_i \in U(R)$
- 6. Finite Factorization Ring (FFR) every $a \in R^{\#}$ has a finite number of factorizations up to order and associates
- 7. Weak Finite Factorization Ring (WFFR) every $a \in R$ has a finite number of nonassociate divisors
- 8. **irreducible- divisor-finite ring (idf-ring)** every nonzero element of *R* has at most a finite number of nonassociate irreducible divisors

RELATIONSHIP BETWEEN FACTORIZATION PROPERTIES

ASCENSION OF FACTORIZATION PROPERTIES

Question: Which properties ascend from a domain R to R[X]?

Property	UFD	HFD	FFD	idf-domain	BFD	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes
R[X]	yes	no	yes	no	yes	no	no

ASCENSION OF FACTORIZATION PROPERTIES

Question: Which properties ascend from a commutative ring R with zero divisors to R[X]?

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes	yes
R[X]	no	no	no	no	no	no	no	no

REFERENCES

[1] D.D. Anderson, D. F. Anderson, and Muhammad Zafrullah. *Factorization in integral domains.* Journal of Pure and Applied Algebra 69 (1990), 1-19.

[2] D. D. Anderson and S. Valdes-Leon. *Factorization in commutative rings with zero divisors.* Rocky Mountain Journal of Mathematics 26 (1996), 439-480.

[3] D.D. Anderson and S. Valdes-Leon. *Factorization in Integral Domains, Chapter: Factorization in commutative rings with zero divisors, II.* Publisher: Marcel Dekker, Editors: D.D. Anderson, pp.197-219.

[4] D.D. Anderson and S. Valdes-Leon. *Factorization in commutative rings with zero divisors, III.* Rocky Mountain Journal of Mathematics 31 (2001), 1-22.

[5] D.D. Anderson and R. Markanda. *Unique factorization rings with zero divisors.* Houston Journal of Mathematics (1985), 15-30.

[6] D.D. Anderson and R. Markanda. *Unique factorization rings with zero divisors: corrigendum.* Houston Journal of Mathematics (1985), 423-426.

 [7] W.J. Heinzer and D.C. Lantz. ACCP in Polynomial Rings: A Counterexample. Proceedings of the American Mathematical Society 121 (1993), 975-977.

[8] D.D. Anderson, S. Chun, and S. Valdez-Leon. *Reduced Factorization in Commutative Rings with Zero Divisors.*Communications in Algebra 39 (2011), 1583-1594.

CONTACT

Email

Ranthony-Edmonds@uiowa.edu

Personal Website

www.RanthonyEdmonds.com

Slides

www.RanthonyEdmonds.com/conferences-and-presentations.html