Unique Factorization in Polynomial Rings with Zero Divisors

Ranthony A.C. Edmonds

PhD Candidate
University of Iowa
Department of Mathematics

FACTORIZATION PROPERTIES

Definition

Two elements $a, b \in D$ where D is an integral domain are associated, denoted $a \sim b$ if $a \mid b$ and $b \mid a$, i.e. $(a)=(b)$

Definition

An element $a \in D$ where D is an integral domain is irreducible if $a=b c$ implies $b \in U(R)$ or $c \in U(R)$

Theorem

In an integral domain the following are equivalent:

1. a is irreducible
2. $a=b c$ implies $a \sim b$ or $a \sim c$
3. (a) is maximal in the set of proper principal ideals of D

FACTORIZATION PROPERTIES

Definition

- a is associated to b in R, $a \sim b$, if $(a)=(b)$
- a is strongly associated, $a \approx b$, if $a=u b$ for some $u \in U(R)$
- a is very strongly associated, $a \cong b$, if (1) $a \sim b$ and (2) $a=b=0$ or $a=r b$ implies $r \in U(R)$
very strongly associated \Longrightarrow strongly associated \Longrightarrow associated

FACTORIZATION PROPERTIES

Definition

- a is irreducible if $a=b c$ implies $a \sim b$ or $a \sim c$
- a is strongly irreducible if $a=b c$ implies $a \approx b$ or $a \approx c$
- a is very strongly irreducible if $a=b c$ implies $a \cong b$ or $a \cong c$
- a is \boldsymbol{m}-irreducible if (a) is maximal in the set of proper principal ideals
v.s. irreducible \Longrightarrow m-irreducible \Longrightarrow s. irreducible \Longrightarrow irreducible

FACTORIZATION PROPERTIES

Definition

- R is atomic if each nonzero nonunit $a \in R$ is a finite product of irreducible elements (atoms)
- R is strongly atomic each nonzero nonunit $a \in R$ is a finite product of strongly irreducible elements
- R is very strongly atomic each nonzero nonunit $a \in R$ is a finite product of very strongly irreducible elements
- R is \boldsymbol{m}-atomic if each nonzero nonunit $a \in R$ is a finite product of m-irreducible elements
- R is p-atomic if each nonzero nonunit $a \in R$ is a finite product of prime elements

FACTORIZATION PROPERTIES

very strongly associated \Longrightarrow strongly associated \Longrightarrow associated
prime
v.s. irreducible \Longrightarrow m-irreducible \Longrightarrow s. irreducible \Longrightarrow irreducible
p-atomic
v.s. atomic $\Longrightarrow m$-atomic \Longrightarrow s. atomic \Longrightarrow atomic

FACTORIZATION PROPERTIES

Definition

- Two factorizations of a nonunit $a \in R$ into nonunits $a=a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$ are isomorphic if $n=m$ and there exists a permutation $\sigma \in S_{n}$ such that $a_{i} \sim b_{\sigma(i)}$
- Two factorizations of a nonunit $a \in R$ into nonunits $a=a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$ are strongly isomorphic if $n=m$ and there exists a permutation $\sigma \in S_{n}$ such that $a_{i} \approx b_{\sigma(i)}$
- Two factorizations of a nonunit $a \in R$ into nonunits $a=a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$ are very strongly isomorphic if $n=m$ and there exists a permutation $\sigma \in S_{n}$ such that $a_{i} \cong b_{\sigma(i)}$

(α, β)-UNIQUE FACTORIZATION RINGS

Definition

- Let $\alpha \in\{$ atomic, strongly atomic, very strongly atomic, m-atomic, p-atomic $\}$ and
- $\beta \in\{$ isomorphic, strongly isomorphic, very strongly isomorphic $\}$, then
- R is an (α, β)-unique factorization ring if (1) R is α and (2) any two factorizations of a nonzero, nonunit element into irreducible elements of the type used to define α are β.

(α, β)-UNIQUE FACTORIZATION RINGS

Definition

R is called a unique factorization ring if R is an (α, β)- unique factorization ring for some (and hence all) (α, β) (except $\alpha=p$ atomic).

Other Unique Factorization Rings

- Bouvier UFR is an (m-atomic, isomorphic)-unique factorization ring
- Galovich UFR is a (very strongly atomic, strongly isomorphic)-unique factorization ring
- Fletcher UFR
- reduced UFR

INDECOMPOSABLE ELEMENTS IN $R[X]$

Definition

An element $f \in R[X]$ is indecomposable if $f=g h$ implies $g \approx_{R[X]}$ a or $h \approx_{R[X]}$ a for some $a \in R$

Example 4.2.5 Let $R=\mathbb{Z}[B, C] /(5 B, B C, 2 C)$ where B, C are indeterminates over \mathbb{Z}. Denote the image of B and C by b, c respectively, so we can write $R=\mathbb{Z}[b, c]$. Note that $10=(2+b X)(5+c X)$ but $2+b X$ and $5+c X$ are not strongly associated to any $a \in R$.

PROPERTIES OF INDETERMINATES

Theorem
For a commutative ring R the following are equivalent:
(1) X is irreducible in $R[X]$
(2) X is indecomposable in $R[X]$
(3) R is indecomposable

PROPERTIES OF INDETERMINATES

Theorem

Let R be a commutative ring. Then X is a product of n atoms if and only if R is a direct product of n indecomposable rings.

Corollary

When X is a finite product of atoms, the factorization is unique up to order and associates.

FACTORING POWERS OF INDETERMINATES

Question: Does X^{n} have unique factorization in $R[X]$?

FACTORING POWERS OF INDETERMINATES

Question: Does X^{n} have unique factorization in $R[X]$?

Example: X^{n} does not have unique factorization in $\mathbb{Z}_{4}[X]$,

- $X^{2}=X \cdot X=(X+2)(X+2)$
- $x^{3}=x \cdot x \cdot x=x(x+2)(X+2)$
- $X^{4}=X \cdot X \cdot X \cdot X=\left(X^{2}+2\right)\left(X^{2}+2\right)$
- $X^{5}=X \cdot X \cdot X \cdot X \cdot X=X\left(X^{2}+2\right)\left(X^{2}+2\right)$

FACTORING POWERS OF INDETERMINATES

Let $L\left(X^{n}\right)$ and $I\left(X^{n}\right)$ represent the longest and shortest lengths of a factorization of X^{n} into atoms in $\mathbb{Z}_{4}[X]$ and $\rho\left(X^{n}\right)=L\left(X^{n}\right) / I\left(X^{n}\right)$

Theorem

In $\mathbb{Z}_{4}[x], L\left(X^{n}\right)=I\left(X^{n}\right)$ if $n=1$ and for $n>1 L\left(X^{n}\right)=n$,

$$
I\left(X^{n}\right)=\left\{\begin{array}{ll}
2 & \text { if } n \text { is even } \\
3 & \text { if } n \text { is odd }
\end{array} \text { and } \rho\left(X^{n}\right)=\left\{\begin{array}{ll}
n / 2 & \text { if } n \text { is even } \\
n / 3 & \text { if } n \text { is odd }
\end{array} .\right.\right.
$$

BOUVIER-GALOVICH UNIQUE FACTORIZATION RING

Characterization of Bouvier-Galovich UFR

Given a commutative ring R, R is a Bouvier-Galovich unique factorization ring if R satisfies one of the following:
(1) R is a unique factorization domain,
(2) R is a quasi-local with unique maximal ideal M where $M^{2}=0$, or
(3) R is a special principal ideal ring.

BOUVIER-GALOVICH UNIQUE FACTORIZATION RING

Characterization of Bouvier-Galovich UFR for $R[X]$
$R[X]$ is a Bouvier-Galovich UFR if and only if $R[X]$ is a UFD.

BOUVIER-GALOVICH UNIQUE FACTORIZATION RING

Characterization of Bouvier-Galovich UFR for $R[X]$ $R[X]$ is a Bouvier-Galovich UFR if and only if $R[X]$ is a UFD.

Proof.

\rightarrow Let $a, b \in R$ such $a b=0$ so that a and b are nonzero
$\rightarrow X, X-a$, and $X-b$ are irreducible since R is
indecomposable
\rightarrow We have $(X-a)(X-b)=X^{2}-(a+b) X+a b$ $=X^{2}-(a+b) X$ $=X(X-(a+b))$
\rightarrow A contradiction, so R is a domain and $R[X]$ is a UFD

FLETCHER UNIQUE FACTORIZATION RING

Characterization of Fletcher UFR
Given a commutative ring R, R is said to be a Fletcher unique factorization ring if and only if it is the finite direct product of unique factorization domains and special principal ideal rings.

Characterization of Fletcher UFR for $R[X]$
For a commutative ring $R, R[X]$ is a Fletcher UFR if and only if it is the finite direct product of unique factorization domains.

Definition

We say that a commutative ring R is a factorial ring if every regular nonunit element of R is a product of (regular) irreducibles and this factorization is unique up to order and associates.

FLETCHER UNIQUE FACTORIZATION RING

Characterization of a Fletcher UFR for $R[X]$
For a commutative ring R, the following are equivalent:

1. $R[X]$ is a Fletcher UFR
2. $R[X]$ is p-atomic
3. R is finite direct product of UFDs
4. $R[X]$ is factorial
5. every regular element of $R[X]$ is a product of principal primes

REDUCED RINGS

Definition

- In a commutative ring R, a factorization $a=a_{1} \cdot a_{n}$ of a nonunit $a \in R$ is reduced if $a \neq a_{1} \cdots \hat{a}_{i} \cdots a_{n}$ for any $i \in\{1, \ldots, n\}$
- In a commutative ring R, a factorization $a=a_{1} \cdot a_{n}$ of a nonunit $a \in R$ is strongly reduced if $a \neq a_{1} \cdots \hat{a}_{i} \cdots a_{n}$ for any $i \in\{1, \ldots, n\}$

Example: Consider $\mathbb{Q} \times \mathbb{Q}$, then $(1,0)=(2,0)\left(\frac{1}{2}, 0\right)(2,0)\left(\frac{1}{2}, 0\right)$ is reduced but NOT strongly reduced. Since,

$$
(1,0)=(2,0) \widehat{\left(\frac{1}{2}, 0\right) \widehat{(2,0)}\left(\frac{1}{2}, 0\right)}
$$

REDUCED UNIQUE FACTORIZATION RINGS

Definition

A commutative ring R is a (weak) strongly reduced unique factorization ring if:
(1) R is atomic, that is, every nonunit of R has a strongly reduced factorization into the product of atoms, and (2) for every (nonzero) nonunit $a \in R$ with $a=a_{1} \cdots a_{n}$ if there exists another strongly reduced factorization $a=b_{1} \cdots b_{m}$ then $n=m$ and after a reordering $a_{i} \sim b_{i}$ for $i=1, \ldots, n$.

REDUCED POLYNOMIAL RINGS

Theorem

For a commutative ring R, the following are equivalent:

1. $R[X]$ (weak) strongly reduced UFR
2. $R[X]$ (weak) reduced UFR
3. R is a UFD or a finite direct product $D_{1} \times \ldots \times D_{n}$ where each $n \geq 2$ and D_{i} is a UFD (possibly a field) where the group of units $U\left(D_{i}\right)=1$

FACTORIZATION PROPERTIES

Let $R^{\#}$ be the set of nonzero nonunits.

1. atomic - each $a \in R^{\#}$ is a product of a finite number of irreducibles (atoms)
2. Ascending Chain Condition on Principal Ideals (ACCP) there does not exist an infinite strictly ascending chain of principal ideals of R
3. Unique Factorization Ring (UFR) - every $a \in R^{\#}$ can be written uniquely as the product of irreducibles up to order and associates
4. Half-Factorial Ring (HFR) - R is atomic and any two factorizations of $a \in R^{\#}$ into the finite product of irreducibles have the same length

FACTORIZATION PROPERTIES

Let $R^{\#}$ be the set of nonzero nonunits.
5. Bounded Factorization Ring (BFR) - there exists an $N(a)$ for every $a \in R^{\#}$ with $a=a_{1} \ldots a_{n}$ where $n \leq N(a)$ and no $a_{i} \in U(R)$
6. Finite Factorization Ring (FFR) - every $a \in R^{\#}$ has a finite number of factorizations up to order and associates
7. Weak Finite Factorization Ring (WFFR) - every $a \in R$ has a finite number of nonassociate divisors
8. irreducible- divisor-finite ring (idf-ring) - every nonzero element of R has at most a finite number of nonassociate irreducible divisors

FACTORIZATION PROPERTIES

RELATIONSHIP BETWEEN FACTORIZATION PROPERTIES

ASCENSION OF FACTORIZATION PROPERTIES

Question: Which properties ascend from a domain R to $R[X]$?

Property	UFD	HFD	FFD	idf-domain	BFD	ACCP	atomic
R	yes						
$R[X]$	yes	no	yes	no	yes	no	no

ASCENSION OF FACTORIZATION PROPERTIES

Question: Which properties ascend from a commutative ring R with zero divisors to $R[X]$?

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes							
$R[X]$	no							

REFERENCES

[1] D.D. Anderson, D. F. Anderson, and Muhammad Zafrullah. Factorization in integral domains. Journal of Pure and Applied Algebra 69 (1990), 1-19.
[2] D. D. Anderson and S. Valdes-Leon. Factorization in commutative rings with zero divisors. Rocky Mountain Journal of Mathematics 26 (1996), 439-480.
[3] D.D. Anderson and S. Valdes-Leon. Factorization in Integral Domains, Chapter: Factorization in commutative rings with zero divisors, II. Publisher: Marcel Dekker, Editors: D.D. Anderson, pp.197-219.
[4] D.D. Anderson and S. Valdes-Leon. Factorization in commutative rings with zero divisors, III. Rocky Mountain Journal of Mathematics 31 (2001), 1-22.

REFERENCES

[5] D.D. Anderson and R. Markanda. Unique factorization rings with zero divisors. Houston Journal of Mathematics (1985), 15-30.
[6] D.D. Anderson and R. Markanda. Unique factorization rings with zero divisors: corrigendum. Houston Journal of Mathematics (1985), 423-426.
[7] W.J. Heinzer and D.C. Lantz. ACCP in Polynomial Rings:
A Counterexample. Proceedings of the American
Mathematical Society 121 (1993), 975-977.
[8] D.D. Anderson, S. Chun, and S. Valdez-Leon. Reduced Factorization in Commutative Rings with Zero Divisors.
Communications in Algebra 39 (2011), 1583-1594.

CONTACT

Email
Ranthony-Edmonds@uiowa.edu

Personal Website
www.RanthonyEdmonds.com

Slides

www.RanthonyEdmonds.com/conferences-and-presentations.html

