\$ 1-5 PRIME IDEALS IN POLYNOMIAL RINGS

Theorem 36: Let R be an integral domain with quotient field K, and let X be an indeterminate. Then we have the following correspondence:

$$\left\{\begin{array}{c} \text{prime ideals in R[X]} \\ \text{that contract to DinR} \end{array}\right\} \iff \left\{\begin{array}{c} \text{prime ideals in K[X]} \\ \end{array}\right\}$$

<u>proof</u>: Let 5 be the set of nonzero elements in R. Then, $R_s = \left\{ \frac{c}{5} \right\} = K$ $R_s = \left\{ \frac{c}{5} \right\} = K$

where K is the quotient field of R. Also note that,

$$R[X]_s = \left\{ \frac{f}{g} \mid g \in R[X] \text{ with } g \neq 0 \right\} = K[X].$$

We know there is a one-to-one correspondence between prime ideals in KCX] and primes in RCX] disjoint from S, that is, prime ideals in RCX] that intersect D, that is prime ideals that contract to 0 in R. \Box

Remark: We can say some things about prime ideals in KIXJ and RIXJ.

primes in K[K]

4 infinitely many maximal ideals corresponding to irreducible polynomials over K

primes in R[X]

- to PREXICREXI prime
- PR[X] and infinitely many prime ideals sitting above PR[X] contract to P

Note: By Theorem 37 there cannot be a chain of three distinct prime ideals with the same contraction in R.

det: Let $P = P_0 \supset P_1 \supset \cdots \supset P_n$ be a chain of distinct prime ideals descending from P. This is a chain of length π . We say P has rank π if there exists a chain of length π descending from P, but no longer chain. If there exist arbitrarily long chains descending from P we say P has rank ∞ .

<u>Remark</u>: the rank of a prime P is also called the height or altitude

Note: A minimal prime has rank 0. In an integral domain since 0 is prime rank 1 primes are called minimal.

<u>Theorem 38</u>: Let P be a prime ideal of rank n in R. In the polynomial ring REXJ, write P*= PREXJ, and let Q be a prime ideal that contracts to P in R and contains P* properly. Then,

- (a) $n \leq rank(P^*) \leq 2n$, and
- (6) $n+1 \leq \operatorname{rank}(Q) \leq 2n+1$.

puop: Let P=P₀⊃P₁⊃···⊃P_n be a chain of primes descending-from P. Consider the expansion of each Pi to REXJ, i.e. $P_i^* = P_i R[X]$. Then we get the chain Q⊃P₁*⊃P₁*⊃···P_n*. Then rank(P*)≥n and rank(Q)≥n+1. Now consider a chain descending from P*= P₀*⊃P₁'⊃····P_k. There cannot exist a chain of three distinct prime ideals in REXJ contracting to the same prime ideal P' in R. Only P* contracts to P, and the others contract at most two to one to primes in R. Thus, rank(P*)≤2n and similarly the rank(Q) ≤ 2n+1. □

EXERCISES

(1) Let Q be prime ideal in REXJ, contracting to P in R. Prove that Q is a G-ideal iff P is a G-ideal and Q properly contains PREXJ.

tools

<u>def</u>: Let R be an integral domain with quotient field K. Then R is a G-domain if TFAE: (1) K is a finitely generated ring over R (2) as a ring, K can be generated over R by one element

<u>def</u>: a prime ideal P in a commutative ring R is called a G-ideal if R/P is a G-domain

Theorem 19: Let R be a domain with quotient field K. For D=22ER TPAE: (1) Any nonzero prime ideal contains 22 (2) Any nonzero ideal contains a power of 22 any G-domain contains such (3) K= R[22⁻¹]

Theorem 21: If R is an integral domain and X is an indeterminate over R, then R[X] is never a G-domain.

Theorem 27: An ideal I in a ring R is a G-ideal if it is the contraction of a maximal ideal in the polynomial ring R[X].

proof: (\Rightarrow) Suppose Q is a G-ideal. Then by Theorem 27, Q is the contraction of a maximal ideal in (R[X])[Y], Call it M. Thus MNR[X]=Q. Since QNR=P, we have MNR=(MNR[X])NR = QNR=P. So P is the contraction of a maximal ideal and thus is a G-ideal.

Now note that $P \subseteq Q \Rightarrow PR[X] \subseteq Q$. Towards a contradiction, suppose PR[X] = Q. Then, $R[X]/Q = R[X]/PR[X] \cong (R/P)[X]$ implies that (R/P)[X] is a G-domain, a contradiction, since a polynomial ring over an integral domain is never a G-domain. It follows that $PR[X] \subseteq Q$.

(\Leftarrow) Now suppose that P is a G-ideal and Q properly contains PREXJ. We want to show Q is a Gideal. Since P is a G-ideal, R/P is a G-domain, so there exists a $\overline{u} \in R/P$ so that $u \in P'$ for every prime ideal P' of R such that $P \subsetneq P'$. Let $Q' \subseteq REXJ$ be prime such that $Q \lneq Q'$. Then we have $PREXJ \lneq Q \lneq Q'$ is a chain of three distinct prime ideals. Note that $PREXJ \cap R = P$ and $Q \cap R = P$, so the contraction of Q' to R must properly contain P. Then $u \in Q' \cap R$, so $u \in Q'$. Note that $u \notin Q$, since $u \in Q \Rightarrow u \in Q \cap R = P$, a contradiction. Thus $\exists u \in REXJ$ with $u \notin Q$ but $u \in Q' \circ Preuer prime$ $ideal Q' containing P. Restated, we can find <math>\overline{u} \in REXJ/Q$ so that u is contained in every prime in REXJ that properly contains Q. so REXJ/Qis a G-domain and it follows that Q is a G-ideal. [] 2) Let Q be a G-ideal in $R[X_1, ..., X_n]$ contracting to P in R. Prove: rank(Q) $\ge n + rank(P)$.

proof: We proceed by induction. For the base case let $Q \leq REX_{i}$] be a G-ideal with $Q \cap R = P$. Then by the previous exercise, P is a G-ideal and $Q \neq PREX_{i}$. Then by Theorem 38, we have rank $(Q) \geq 1 + rank(P)$. Now assume that if $Q \leq REX_{i}, ..., X_{n-i}$] is a G-ideal contracting to P in R, then rank $(Q) \geq n-1 + rank(P)$. Let $R' = REX_{i}, ..., X_{n-i}$ and let $Q \leq REX_{i}, ..., X_{n} = R'EX_{n}$ be a G-ideal contracting to P_{n} in R. Consider $Q \cap R' = P'$. since Q is a G-ideal, by the previous exercise P' is a G-ideal' and P'R'EX_{n} = Q. since $Q \cap R = P_{i}$ then $P' \cap R = P_{n}$. By induction hypothesis, rank $(P') \geq n-1 + rank(P)$ and by the base case rank $(Q) \geq 1 + rank(P')$.

$$rank(Q) \ge |+rank(P')$$
$$\ge |+ n-1+rank(P)$$
$$\ge n+rank(P).$$