§ 1-5 Prime Ideals in polynomial Rings

Theorem 36: Let R be an integral domain with quotient field K, and let X be an indeterminate. Then we have the following correspondence:

$$
\left.\left\{\begin{array}{l}
\text { prime ideals in } R[X] \\
\text { that contract to } O \text { in } R
\end{array}\right\} \Longleftrightarrow \text { (prime ideals in } K[X]\right\}
$$

proof: Let s be the set of nonzero elements in R. Then,

$$
R_{s}=\left\{\left.\frac{r}{s} \right\rvert\, s \in R \text { with } s \neq 0\right\}=K
$$

where K is the quotient field of R. Also note that,

$$
R[x]_{s}=\left\{\left.\frac{f}{g} \right\rvert\, g \in R[x] \text { with } g \neq 0\right\}=K[x] .
$$

We know there is a one-to-one correspondence between prime ideals in $K[X]$ and primes in $R[X]$ disjoint from S, that is, prime ideals in $R[x]$ that intersect 0 ; that is prime ideals that contract to 0 in R.

Remark: We can say some things about prime ideals in $K[x]$ and $R[x]$.
primes in $k[x]$
\rightarrow infinitely many maximal ideals corresponding to irreducible polynomials over K
primes in $R[X]$
\rightarrow for $P \subset R$ prime, we can expand to $P R[x] \subset R[x]$ prime
$\rightarrow P R[X]$ and infinitely many prime ideals sitting above PR [x] contract to P

Note: By Theorem 37 there cannot be a chain of three distinct prime ideals with the same contraction in R.
def: Let $P=P_{0} \supset P_{1} \supset \cdots \supset P_{n}$ be a chain of distinct prime ideals descending from P. This is a chain of length n. We say P has rank x if there exists a chain of length n descending from P, but no longer chain. If there exist arbitrarily long chains descending from P we say P has rank ∞.

Remark: the rank of a prime P is also called the height or altitude

Note: A minimal prime has rank 0 . In an integral domain since 0 is prime rank 1 primes are called minimal.

Theorem 38: Let P be a prime ideal of rank n in R. In the polynomial ring $R[X]$, write $P^{*}=P R[X]$, and let Q be a prime ideal that contracts to P in R and contains p^{*} properly. Then,
(a) $n \leqslant \operatorname{rank}\left(p^{*}\right) \leqslant 2 n$, and
(b) $n+1 \leq \operatorname{rank}(Q) \leq 2 n+1$.
proof: Let $P=P_{0} \supset P_{1} \supset \cdots \supset P_{n}$ be a chain of primes descending from P. Consider the expansion of each P_{i} to $R[X]$; i.e. $P_{i}^{*}=P_{i} R[X]$. Then we get the chain $Q \supset P_{0}^{*} \supset P_{1}^{*} \supset \cdots P_{n}^{*}$. Then $\operatorname{rank}\left(P^{*}\right) \geq n$ and $\operatorname{rank}(Q) \geq n+1$. Now consider a chain descending from $P^{*}=P_{0}^{*} \supset P_{1}^{\prime} \supset \cdots P_{k}^{\prime}$. There cannot exist a chain of three distinct prime ideals in $R[x]$ contracting to the same prime ideal P^{\prime} in R. Only P^{*} contracts to P, and the others contract at most two to one to primes in R. Thus, $\operatorname{rank}\left(P^{*}\right) \leq 2 n$ and similarly the $\operatorname{rank}(Q) \leq 2 n+1$.

EXERCISES
(1.) Let Q be prime ideal in $R[X]$, contracting to P in R. Prove that Q is a G-ideal iff P is a G ideal and Q properly contains $P R[x]$.
tools
def: Let R be an integral domain with quotient field K. Then R is a G-domain if TFAE:
(1) K is a finitely generated ring over R
(2) as a ring, K can be generated over R by one element
def: a prime ideal P in a commutative ring R is called a G-ideal if R / P is a G-domain

Theorem 19: Let R be a domain with quotient field K. For $O \neq u \in R$ $F A E$:
(1) Any nonzero prime ideal contains u
(2) Any nonzero ideal contains a power of $u \quad$ any G-domain contains such
(3) $K=R\left[u^{-1}\right]$

Theorem 21: If R is an integral domain and X is an indeterminate over R, then $R[x]$ is never a G-domain.

Theorem 27: An ideal I in a ring R is a G-ideal iff it is the contraction of a maximal ideal in the polynomial ring $R[X]$.
proof: (\Rightarrow) Suppose Q is a Gideal. Then by Theorem $27, Q$ is the contraction of a maximal ideal in $(R[x])[y]$, call it M. Thus $M \cap R[x]=Q$. Since $Q \cap R=P$, we have $M \cap R=(M \cap R[X]) \cap R=Q \cap R=P$. So P is the contraction of a maximal ideal and thus is a G-ideal.

Now note that $P \subseteq Q \Rightarrow P R[X] \subseteq Q$. Towards a contradiction, suppose $\operatorname{PR}[X]=Q$. Then, $R[X] / Q=R[X] / P R[X] \cong(R / P)[X]$ implies that $(R / P)[X]$ is a G-domain, a contradiction, since a polynomial ring over an integral domain is never a G-domain. It follows that $P R[X] \subsetneq Q$.
(\Longleftarrow) Now suppose that P is a G ideal and Q properly contains $P R[X]$. We want to show Q is a Gideal. Since P is a Gideal, R / P is a G-domain, so there exists a $\bar{u} \in R / P$ so that $u \in P^{\prime}$ for every prime ideal P^{\prime} of R such that $P \subsetneq P^{\prime}$. Let $Q^{\prime} \subseteq R[x]$ be prime such that $Q \nsubseteq Q^{\prime}$. Then we have $P R[x] \nsubseteq Q \subseteq Q^{\prime}$ is a chain of three distinct prime ideals. Note that $P R[X] \cap R=P$ and $Q \cap R=P$, so the contraction of Q^{\prime} to R must properly contain P. Then $u \in Q^{\prime} \cap R$, so $u \in Q^{\prime}$. Note that $u \notin Q$, since $u \in Q \Rightarrow u \in Q \cap R=P, a$ contradiction. Thus $\exists u \in R[x]$ with $u \notin Q$ but $u \in Q^{\prime}$ for every prime ideal Q ' containing P. Restated, we can find $\bar{u} \in R[x] / Q$ so that u is contained in every prime in $R[X]$ that properly contains Q. so $R[X] / Q$ is a G-domain and it follows that Q is a G-ideal.
(2) Let Q be a G-ideal in $R\left[X_{1}, \ldots, X_{n}\right]$ contracting to P in R. Prove : $\operatorname{rank}(Q) \geq n+\operatorname{rank}(P)$.
proof: we proceed by induction. For the base case let $Q \leq R\left[x_{1}\right]$ be a G-ideal with $Q \cap R=P$. Then by the previous exercise, P is a G-ideal and $Q \supsetneq P R\left[X_{1}\right]$. Then by Theorem 38, we have $\operatorname{rank}(Q) \geq 1+\operatorname{rank}(P)$.
Now assume that if $Q \leq R\left[X_{1}, \ldots, X_{n-1}\right]$ is a G-ideal contracting to P in R, then $\operatorname{rank}(Q) \geq n-1+\operatorname{rank}(P)$.
Let $R^{\prime}=R\left[X_{1}, \ldots, X_{n-1}\right]$ and let $Q \leq R\left[X_{1}, \ldots, X_{n}\right]=R^{\prime}\left[X_{n}\right]$ be a G-ideal contracting to P_{n} in R. consider $Q \cap R^{\prime}=P^{\prime}$. Since Q is a G-ideal, by the previous exercise P^{\prime} is a Gideal and $P^{\prime} R^{\prime}\left[X_{n}\right] \subset Q$. since $Q \cap R=P$, then $P^{\prime} \cap R=P_{n}$. By induction hypothesis, $\operatorname{rank}\left(P^{\prime}\right) \geq n-1+\operatorname{rank}(P)$ and by the base case $\operatorname{rank}(Q) \geq 1+\operatorname{rank}\left(P^{\prime}\right)$. Then we have,

$$
\begin{aligned}
\operatorname{rank}(Q) & \geq 1+\operatorname{rank}\left(P^{\prime}\right) \\
& \geq 1+n-1+\operatorname{rank}(P) \\
& \geq n+\operatorname{rank}(P) .
\end{aligned}
$$

