
Intro to Modern Algebra Part 1a: Course Notes

The notes for this course are designed to be interactive. I encourage you

to stop and work through the exercises as they appear in the text. Each

week a certain number of the exercises will be collected as homework. As

an additional resource, any example, theorem, corollary, etc. in blue has

an instructional video corresponding to that content. These videos are

posted under Modules in ICON.

§1.1 THE DIVISION ALGORITHM

The goal of this section is to prove the Division Algorithm. Though this is an

abstract algebra course, it is important to focus on the themes of arithmetic

that the study of algebra heavily depends on. We will begin our study by

focusing on division.

Well-Ordering Axiom

We will start with the set of all integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
with the usual order relation of (<) on the set Z. We will also assume the

Well-Ordering Axiom, which is thus stated:

Well-Ordering Axiom Every nonempty subset of the nonnegative

integers contains a smallest element.

Whenever you read a mathematical statement, you should make sure it makes

sense by considering some examples.

Example Let S = {2k + 1 | k ∈ Z with k ≥ 0}
Let’s think about this set S by listing out its elements:

S = {2(0) + 1, 2(1) + 1, 2(2) + 1, 2(3) + 1, . . .} = {1, 3, 5, 7, . . .}

Well-Ordering Axiom continued on next page. . . Page 1 of 65
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So S is the set of positive odd numbers. Since this is a subset of the

nonnegative integers, the Well-Ordering Axiom tells us this set has a least

element, namely 1.

Division Algorithm

The Division Algorithm Let a, b be integers with b > 0. Then

there exist unique integers q and r such that

a = bq + r and 0 ≤ r < b

Before we prove the division algorithm, let’s do some examples to make

sure the statement is clear.

Example 1.1.1 c Find the quotient q and remainder r when a is

divided by b without using a calculator.

(c) a = −17; b = 4

Answer : We want to find q and r so that −17 = 4q + r where 0 ≤ r<b.

If we let q = −5 and r = 3 then we see that 4(−5) + 3 = −20 + 3 = −17.

Example 1.1.2 b Find the quotient q and remainder r when a is divided

by b without using a calculator.

(b) a = 302; b = 19

Answer : If we do the long division, we see that 302 ÷ 19 is 15 with a

remainder of 17. Thus, 302 = 19(15) + 17. so q = 15 and r = 17.
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Example 1.1.4 a,b Use a calculator to find the quotient q and re-

mainder r when a is divided by b without using a calculator.

(a) a = 8, 126, 493; b = 541

Answer : If we do the long division on a calculator, we see that 8, 126, 493÷
541 = 15, 021.244. This means that the quotient q = 15, 021. To de-

termine the remainder, we multiply 15, 021 × 541 = 8, 126, 361 and

subtract this from 8, 126, 493. So r = 8, 126, 493− 8, 126, 361 = 132.

Thus, 8, 126, 493 = 541(15, 021) + 132.

(b) a = −9, 217, 645; b = 617

Answer : If we do the long division on a calculator, we see that−9, 217, 645÷
617 = −14, 939.4571. We want our remainder to be positive. This

means that the quotient q = −14, 940. Next, we multiply −14, 940 ×
617 = −9, 217, 980 and subtract this from−9, 217, 645. So r = −9, 217, 645−
(−9, 217, 980) = 335.

Thus, −9, 217, 645 = 617(−14, 940) + 335.

Exercise 1.1.1 a,b Find the quotient q and remainder r when a is divided

by b without using a calculator.

(a) a = 17; b = 4

(b) a = 0; b = 19

Exercise 1.1.2 a,c Find the quotient q and remainder r when a is divided

by b without using a calculator.

(a) a = −51; b = 6

(c) a = 2000; b = 17
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Exercise 1.1.3 Use a calculator to find the quotient q and remainder r

when a is divided by b.

(a) a = 517; b = 83

(b) a = −612; b = 74

(c) a = 7, 965, 532; b = 127

Proof of Division Algorithm

Now that we have seen some examples of how to use the division algorithm,

we will prove it formally. We will do this by splitting the proof into four

steps.

Step 1: Let S be the set of integers of the form a−bx where x is an integer

and a − bx ≥ 0. Show that S is a nonempty set by finding a value for x

such that a− bx ≥ 0.

Proof of Step 1 : We first show that a + b|a| ≥ 0. Since b is a positive

integer by hypothesis, we must have

b ≥ 1

b|a| ≥ |a| [Multiply both sides of the inequality by |a|.]
b|a| ≥ −a [Because |a| ≥ −a by the definition of absolute value.]

a+ b|a| ≥ 0

Now let x = −|a|. Then

a− bx = a− b(−|a|) = a+ b|a| ≥ 0.

So, a− bx is in S when x = −|a|. This means that S is nonempty.

Step 2: Find q and r such that a = bq + r and r ≥ 0.

Proof of Division Algorithm continued on next page. . . Page 4 of 65
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Proof of Step 2 : In Step 1 we showed that S is a nonempty set. So by

the Well-Ordering Axiom it must have a smallest element, let’s call this

element r. Since r ∈ S, we know that r ≥ 0 and r = a − bx for some x,

say x = q. Thus,

r = a− bq and r ≥ 0, or, equivalently, a = bq + r and r ≥ 0.

Step 3: Show that r < b.

Proof of Step 3 : Now towards a contradiction, suppose r ≥ b. Then

r − b ≥ 0, so we have

0 ≤ r − b = (a− bq)− b = a− b(q + 1).

Since a− b(q + 1) is nonnegative, it is an element of S by definition. But

since b is positive, it is certainly true that r − b<r. Thus

a− b(q + 1) = r − b<r.

This last inequality states that a− b(q+ 1), an element of S, is less than r,

which is the smallest element of S. This is a contradiction. So we cannot

have r ≥ b, thus r < b.

Step 4: Show that r and q are the only numbers with these properties.

Proof of Step 4 : To prove uniqueness, we want to suppose there are integers

q1 and r1 such that a = bq1 + r1 and 0 ≤ r1 < b, and show that q1 = q and

r1 = r. Since a = bq + r and a = bq1 + r1 we have

bq + r = bq1 + r1.

So

b(q − q1) = r1 − r. (∗)

Furthermore,

0 ≤ r < b and 0 ≤ r1 < b.

Proof of Division Algorithm continued on next page. . . Page 5 of 65
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If we multiply the first inequality by −1 we get

−b < −r ≤ 0 and 0 ≤ r < b.

Adding these two inequalities gives,

−b < r1 − r < b

−b < b(q − q1) < b [By Equation (∗)]
−1 < q − q1 < 1 [Divide each term by b]

But q−q1 is an integer (because q and q1 are integers) and the only integer

strictly between −1 and 1 is 0. Therefore q − q1 = 0 and q = q1. Substi-

tuting q − q1 = 0 in Equation (∗) shows that r1 − r = 0 and so r = r1.

Thus the quotient and remainder are unique. �

Example 1.1.5 Let a be any integer and let b and c be positive

integers. Suppose that when a is divided by b, the quotient is q and the

remainder is r, so that

a = bq + r and 0 ≤ r < b.

If ac is divided by bc, show that the quotient is q and the remainder is rc.

Answer : We want to know what happens when ac is divided by bc, so first

start by multiplying both the equation and the inequality by c. Then we

have

ac = (bc)q + rc and 0 ≤ rc < bc.

The division algorithm tells us that if ac is divided by bc the quotient is q

and the remainder is rc as desired.

Exercise 1.1.6 Let a, b, c and q be as in Exercise 1.1.5 of the text. Sup-

pose that when q is divided by c, the quotient is k. Prove that when a is
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divided by bc, then the quotient is also k.

Example 1.1.7 Prove that the square of an integer is either of the

form 3k or of the form 3k + 1 for some integer k. [Hint: By the Division

Algorithm, a must be of the form 3q or 3q + 1 or 3q + 2.]

Proof : Let a ∈ Z be given. If we apply the division algorithm with b = 3,

there are unique integers q and r such that

a = 3q + r and 0 ≤ r < 3.

Since 0 ≤ r < 3, we have r = 0, 1, or 2 and so a must be of the form

3q, 3q+1, or 3q+2 for some integer q. We can consider each of these cases

separately.

a = 3q

a2 = (3q)2 = 9q2 = 3(3q2) = 3k where k = 3q2 ∈ Z.

a = 3q + 1

a2 = (3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1 = 3k + 1 where

k = 3q2 + 2q ∈ Z.

a = 3q + 2

a2 = (3q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) = 3k + 1 where

k = 3q2 + 4q + 1) ∈ Z

It follows from the above cases that the square of an integer is either of

the form 3k or 3k + 1 for some integer k.

Exercise 1.1.8 Use the Division Algorithm to prove that every odd inte-

ger is either of the form 4k + 1 or of the form 4k + 3 for some integer k.
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Exercise 1.1.9 Prove that the cube of any integer a has to be exactly one

of these forms: 9k or 9k + 1 or 9k + 8 for some integer k. [Hint : Adapt

the hint in Exercise 1.1.7, and cube a ine each case.]

Exercise 1.1.10 Prove the following version of the Division Algorithm,

which holds for both positive and negative divisors.

Extended Division Algorithm: Let a and b be integers with b 6= 0. Then

there exist unique integers q and r such that a=bq+r and 0 ≤ r <| b |.

[Hint : Apply Theorem 1.1 when a is divided by | b |. Then consider two

cases (b > 0) and (b < 0).]
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§1.2 DIVISIBILTY

Last section we discussed the division algorithm. This told us that given two

integers a and b with b > 0 there is a unique quotient q and remainder r

so that a = bq + r with 0 ≤ r < b. In this section we focus on when the

remainder r is 0. This happens when b is a factor of a. Let’s begin with a a

formal definition of “divides.”

Divisibility

Let a and b be integers with b 6= 0. We say that b divides a (or that b is

a divisor of a, or that b is a factor of a) if a = bc for some integer c. In

symbols, “b divides a” is written b | a and “b does not divide a” is written

b 6 |a.

Again, whenever you are introduced to a new definition, like the new state-

ment and theorem in the last section, you should take some time understand-

ing how it works.

Example 3 | 24 because 24 = 3 · 8

Example 3 6 |17 because there is no such integer c where 17 = 3c

Example −6 | 54 because 54 = (−6)(−9)

Example b | 0 holds for any nonzero b since 0 = 0 · b

Before we proceed consider the following remarks:

Remark 1 a and −a have the same divisors
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Remark 2 every divisor of the nonzero integer a is less than or equal to |a|

Remark 3 a nonzero integer only has finitely many divisors

Since every nonzero integer has finitely many divisors, for small integers it

is straightforward to list the divisors. Consider for example, the integer 24.

All of its divisors are given by

1,−1, 2,−2, 3,−3, 4,−4, 6,−6, 8,−8, 12,−12, 24,−24.

Similarly, all of the divisors of 64 are

1,−1, 2,−2, 4,−4, 8,−8, 16,−16, 32,−32, 64,−64.

The common divisors of 24 and 64 are the numbers that appear in both

lists of factors, that is

1,−1, 2,−2, 4,−4, 8,−8.

The largest of these common factors is called the greatest common divisor.

Greatest Common Divisor

Let a, b be integers, not both 0. The greatest common divisor (gcd)

of a and b is the largest integer d that divides both a and b. In other

words, d is the gcd of a and b provided that

1. d | a and d | b

2. if c | a and c | b, then c ≤ d

The greatest common divisor of a and b is unique and is usually denoted

(a, b).

In the example before the definition, we saw that (24, 64) = 8. If we con-

sider 14 and 3 we. have (3, 14) = 1. Two integers are said to be relatively
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prime if their greatest common divisor is 1.

Theorem 1.2.2 (Bezout’s Identity) Let a and b be integers, not

both 0, and let d be their greatest common divisor. Then there exist (not

necessarily unique) integers u and v such that d = au+ bv.

Consider the example above where we saw that (24, 64) = 8. Theorem 1.2.2

tells us that we can write 8 as a linear combination of 24 and 64. Indeed,

8 = 24(−5) + 64(2) and 8 = 24(3) + 64(−1).

Now we will prove Theorem 1.2.2 in two steps.

Proof of Theorem 1.2.2

Step 1: Let S = {am + bn | m,∈ Z} be the set of all linear combinations of

a and b. Find the smallest element of S.

Proof of Step 1 : First note that a2 + b2 = aa+ bb ∈ S and a2 + b2 ≥ 0 since

we assume a and b are both not zero. Thus S contains positive elements,

so by the Well-Ordering Axiom it has a least positive element. Denote this

smallest element by t where t = au+ bv for some u, v ∈ Z.

Step 2: Prove that t is the gcd of a and b, that is, t = d.

Proof of Step 2 : Now we have to show that t satisfies 1 and 2 from the

definition of greatest common divisor. First we show that t | a and t | b. By

the division algorithm, there exist integers q and r such that a = tq+ r with

Proof of Theorem 1.2.2 continued on next page. . . Page 11 of 65
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0 ≤ r < t. Thus,

r = a− tq
r = a− (au+ bv)q

r = a− aqu− bvq
r = a(1− qu) + b(−vq).

Thus r is a linear combination of a and b, so r ∈ S. Since r < t, r cannot

be positive since t is the smallest positive element in S. Since r ≥ 0 this

implies that r = 0. Thus

a = tq + r = tq + 0 = tq

so t | a. A similar argument shows that t | b. Thus t is a common divisor of

a and b.

Now we want to show that t is unique, that is, if c is any other common

divisor of a and b, then c ≤ t. Since c | a and c | b we have that a = ck and

b = cl for some k, l ∈ Z. Thus we have

t = au+ bv

= (ck)u+ (cs)v

= c(ku+ sv)

The first and last terms show that c | t. Since every divisor of t is less than

or equal to |t| we have c ≤ |t| ≤ t since t is positive. It follows that t is the

greatest common divisor d. �

Example 1.2.14 a Find the smallest positive integer in the given set.

(a) {6u+ 15v | u, v ∈ Z}
Answer : Note that (6, 15) = 3. Theorem 1.2.2 tells us that we can

write the greatest common divisor 3 of 6 and 15 as a linear combi-

nation d = 6x + 15y where x, y ∈ Z. Furthermore, from the proof of

Theorem 1.2.2 we see that the gcd of 6 and 15 will be the smallest

Proof of Theorem 1.2.2 continued on next page. . . Page 12 of 65
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positive element of the set. So 3 is an element of the set, in fact it is

the smallest positive element of the set.

Exercise 1.2.14 b Find the smallest positive integer in the given set.

(b) {12r + 17s | r, s ∈ Z}

Euclidean Algorithm

We introduce the Euclidean Algorithm with the following example.

Example 1.2.15 a The Euclidean Algorithm is an efficient way to find

(a, b) for any positive integers a and b. It only requires you to apply the

Division Algorithm several times until you reach the gcd, as illustrated

here for (524, 148).

(a) Verify that the following statements are correct.

524 = 148 · 3 + 80 0 ≤ 80 < 148

148 = 80 · 1 + 68 0 ≤ 68 < 80

80 = 68 · 3 + 12 0 ≤ 12 < 68

68 = 12 · 5 + 8 0 ≤ 8 < 12

12 = 8 · 1 + 4 0 ≤ 4 < 8

8 = 4 · 2 + 0

Note that the divisor in each line becomes the dividend in the next

line, and the remainder in each line becomes the divisor in the next

line. Here the (524, 148) = 4. This is the same as the last nonzero

remainder, namely 4.

Euclidean Algorithm continued on next page. . . Page 13 of 65

https://www.youtube.com/watch?v=P-HZy2UM1N8&app=desktop
https://www.youtube.com/watch?v=P-HZy2UM1N8&app=desktop


Intro to Modern Algebra Part 1a: Course Notes

(c) Use the Euclidean Algorithm to find (1003, 456).

1003 = 456 · 2 + 91 0 ≤ 91 < 456

456 = 91 · 5 + 1 0 ≤ 1 < 91

91 = 1 · 91 + 0

So (1003, 456) = 1 since 1 is the last nonzero remainder. Recall this

means that 1003 and 456 are relatively prime.

Exercise 1.2.15 d-j

(d) Use the Euclidean Algorithm to find (322, 148)

(e) Use the Euclidean Algorithm to find (5858, 1436)

The equations in part (a) can be used to express the gcd 4 as a linear

combination of 524 and 148 as follows. First, rearrange the first 5

equations in part (a), as shown below.

80 = 452− 148 · 3 (1)

68 = 148− 80 (2)

12 = 80− 68 · 3 (3)

8 = 68− 12 · 5 (4)

4 = 12− 8 (5)

(f) Equation (1) expresses 80 as a linear combination of 524 and 148. Use

this fact and Equation (2) to write 68 as a linear combination of 524

and 148.

(g) Use Equation (1), part (f), and Equation (3) to write 12 as a linear

combination of 524 and 148.

(h) Use parts (f) and (g) to write 8 as a linear combination of 524 and 148.

Euclidean Algorithm continued on next page. . . Page 14 of 65
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(i) Use parts (g) and (h) to write the gcd 4 as a linear combination of 524

and 148 as desired.

(j) Use the method described in parts (f)-(i) to express the gcd in part (c)

as a linear combination of 1003 and 456.

Properties of the Greatest Common Divisor

Corollary 1.2.3 Let a and b be integers, not both 0, and let d be a

positive integer. Then d is the greatest common divisor of a and b if and

only if d satisfies these conditions:

1. d | a and d | b

2. if c | a and c | b, then c | d

Proof of Corollary 1.2.3

We will prove this in two steps because of the if and only if.

Step 1 Prove if d = (a, b) then d satisfies conditions 1 and 2.

Suppose d = (a, b), then d | a and d | b. So condition 1 is satisfied. Now

suppose there is an integer c such that c | a and c | b. Then there exist

integers x and y such that a = cx and b = cy. Also, by Theorem 1.1.2 we

can write d as a linear combination of a and b, so we have

d = au+ bv = (cx)u+ (cy)v = c(xu+ yv)

so d | c. Thus d satisfies condition 2.

Step 2 Prove if d is a positive integer that satisfies conditions 1 and 2 then

d = (a, b).

Proof of Corollary 1.2.3 continued on next page. . . Page 15 of 65
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Condition 1 is the same as the first condition in the definition of greatest

common divisor introduced earlier in this section. If there is some integer

c with c | a and c | b then condition 2 gives that c | d. Since c is a divisor

of d we have that c ≤ |d| ≤ d since d is positive. So d satisfies the second

condition in the definition of the greatest common divisor. It follows that

(a, b) = d. �

Theorem 1.2.4 If a | bc and (a, b) = 1, then a | c.

Proof of Theorem 1.2.4 We know that (a, b) = 1, then by Bezout’s Identity

we can write 1 as a linear combination of a and b, say 1 = au + bv for some

integers u and v. Also, a | bc implies bc = ar for some integer r. Using this

and multiplying this equation by c we have

c = acu+ bcv = acu+ arv = a(cu+ rv).

It follows that a | c.

Exercise 1.2.17 Suppose (a, b) = 1. If a | c and b | c, prove that ab | c.
[Hint : c = bt (Why?), so a | bt. Use Theorem 1.2.4.]

Example 1.2.19 If a | (b + c) and (b, c) = 1, prove that (a, b) = 1 =

(a, c).

Proof : First we show that (a, b) = 1. Suppose d is a common divisor of a

and b. Then d | a implies a = ds for some integer s and d | b implies b = dt

for some integer t. Similarly, since a | b+ c we can say that b+ c = ak for

some integer k. Rewriting this equation we have

c = ak − b = (ds)k − dt = d(sk − t)

so d | c. Thus we have d is a common divisor of b and c. Since we assume

(b, c) = 1 it follows that d = 1.
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To see that a and c are relatively prime. Note that (b, c) = 1 implies that

1 = bx+ cy for some integers x and y. Then we have

1 = bx+ cy = (ak − c)x+ cy = akx− cx+ cy = a(kx) + c(−x+ y).

If we let m = kx and n = −x + y then we have integer solutions to the

equation 1 = am+ cn. Thus (a, c) = 1.

Exercise 1.2.21 Prove that (a, b) = (a, b+ at) for every t ∈ Z.

Exercise 1.2.22 If (a, c) = 1 and (b, c) = 1, prove that (ab, c) = 1.

Example 1.2.28 Prove that a positive integer is divisible by 3 if and only

if the sum of its digits is divisible by 3. [Hint : 103 = 999 + 1 and similarly

for other powers of 10.]

Proof : Let x be a positive integer. Note that we can write x as its decimal

expansion x = a0a1 . . . an. This implies that

x = a0 + a1 · 10 + a2 · 102 + . . .+ an · 10n

= a0 + a1(9 + 1) + a2(99 + 1) + . . . an(9 · · · 9︸ ︷︷ ︸
n times

+1)

= a0 + 9a1 + a1 + 99a2 + a2 + . . .+ 9 . . . 9︸ ︷︷ ︸
n times

an + an

= (a0 + a1 + . . .+ an)︸ ︷︷ ︸
s

+(9a1 + 99a2 + . . .+ 9 . . . 9︸ ︷︷ ︸
n times

an)

Note that the first group of terms s represents the sum of the digits of x.

If x is divisible by 3 then because the right group of terms is divisible by

3 (each term is divisible by 9 and thus 3), then s must be divisible by 3.

Conversely, if the sum of the digits of x is divisible by 3, we see from above

that each group of terms in the decimal expansion of x is divisible by 3 so

x must also be divisible by 3. .
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Exercise 1.2.29 Prove that a positive integer is divisible by 9 if and only

if the sum of its digits is divisible by 9. [See Exercise 28.]
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§1.3 PRIMES AND UNIQUE FACTORIZATION

Primality

Now we begin our discussion on prime numbers. Prime numbers are very

important because the serve as the multiplicative building blocks of the in-

tegers. In this section we will show that every integer that is nonzero other

than ±1 can be written uniquely as the product of primes.

An integer p is said to be prime if p 6= 0,±1 and the only divisors of p

are ±1 and ±p.

Remark 4: p is prime if and only if −p is prime

Remark 5: if p and q are prime and p | q, then p = ±q

Theorem 1.3.5 Let p be an integer with p 6= 0,±1. Then p is prime

if and only if p has this property:

whenever p | bc, then p | b or p | c.

Proof of Theorem 1.3.5 : First assume p is prime and that p | bc. Let

d = (p, b). Then d must be a positive divisor of the prime p. Thus the

only possibilities are (p, b) = 1 and (p, b) = ±p (whichever is positive.) If

(p, b) = ±p, then p | b. If (p, b) = 1, since p | bc, we must have p | c
by Theorem 1.2.4. Thus in either case, p | b or p | c. Now assume that if

p | bc then p | b or p | c. Please see Exercise 1.3.7 to complete the proof.

Exercise 1.3.7 If a, b, c are integers and p is a prime that divides both a

and a+ bc, prove that p | b or p | c.
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Corollary 1.3.6 If p is prime and p | a1a2 · · · an, then p divides at

least one of the ai.

Proof of Corollary 1.3.6 : Let p be prime such that p | a1a2 · · · an and consider

the product (a1a2 · · · an) = a1(a2a3 · · · an). Then by Theorem 1.3.5 p | a1 or

p | a2a3 · · · an. If p | a1 then we are done. Otherwise if p | a2(a3a4 · · · an) we

have that p | a2 or p | a3a4 · · · an. We can continue in this way until we find

some ai such that p | ai. This will take at most n steps.

Example 1.3.15 If p is prime and p | an, is it true that pn | an?

Justify your answer.

Answer : Note that an = a · · · a︸ ︷︷ ︸
n times

. So if p | an by Corollary 1.3.6 we must

have p | a. Thus a = pk for some integer k. Then an = (pk)n = pnkn. It

follows that pn | an.

Exercise 1.3.7 If a, b, c are integers and p is a prime that divides both a

and a+ bc, prove that p | b or p | c.

Exercise 1.3.17 If p is prime and (a, b) = p, then (a2, b2) =?

Exercise 1.3.18 Prove of disprove each of the following statements:

(a) If p is prime and p | (a2 + b2) and p | (c2 + d2), then p | (a2 − c2).
(b) If p is prime and p | (a2 + b2) and p | (c2 + d2), then p | (a2 + c2).

(c) If p is prime and p | a and p | (a2 + b2), then p | b.
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Theorem 1.3.7 Every integer n except 0,±1 is a product of primes.

Proof of Theorem 1.3.7 First assume that n > 1. Let S be the set of all

integers greater than 1 that are not a product of primes. We want to show that

S is an empty set. Towards a contradiction, suppose that S is a nonempty

set. By the Well-Ordering Axiom, S must have a smallest element, call it

m. Since m is not prime, it must have some positive divisors, say m = ab

for a, b ∈ Z. Note that 1 < a < m and 1 < b < m. Since m is the smallest

element of S that implies that a and b are not in S.

Recall that S is the set of all integers greater than 1 that are not a product of

primes, so a, b 6∈ S implies that both a and b must be the product of primes,

so

a = p1p2 · · · pr and b = q1q2 · · · qs

where r ≥ 1 and s ≥ 1 and each pi and qj is prime. But then

m = ab = p1p2 · · · prq1q2 · · · qs

is a product of prime numbers, a contradiction. So we cannot have S be

nonempty. S empty implies that every integer n > 1 is a product of primes.

This argument also holds for −n.

Page 21 of 65

https://www.youtube.com/watch?v=ocwp05924Bk&feature=youtu.be


Intro to Modern Algebra Part 1a: Course Notes

Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic Every integer n ex-

cept 0,±1 is a product of primes. This prime factorization is unique in

the following sense: If

n = p1p2 · · · pr and n = q1q2 · · · qs

with each pi, qj prime, then r = s (that is, the number of factors is the

same) and after reordering and relabeling the q′s,

p1 = ±q1, p2 = ±q2, p3 = ±q3, . . . , pr = ±qr

Proof of Fundamental Theorem of Arithmetic: We saw in Theorem 1.3.7

that every integer n except 0,±1 can be factored into the product of primes.

So any given integer n has at least one factorization into primes, say n =

p1p2 · · · pr. Suppose there exists another factorization of n into the product

of primes where n = q1q2 · · · qs. We want to show that r = s and after a

relabeling the pi = ±qj.
Since we have two factorizations of n into the product of primes we can set

them equal to one another. So

p1p2 · · · pr = q1q2 · · · qs,

and p1(p2 · · · pr) = q1q2 · · · qs implies that p1 | q1q2 · · · qs, by Corollary 1.3.6.

We can assume that p1 | q1. Thus p1 = ±q1.
Substituting we now have ±q1p2p3 · · · pr = q1q2q3 · · · qs. If we divide both

sides by q1 we have

p2(±p3p4 · · · pr) = q2q3q4 · · · qs.

Thus, p2 | q2q3 · · · qs. By Corollary 1.3.6, p2 must divide one of the qj, assume

p2 | q2. Then p2 = ±q2 and

±q2p3p4 · · · pr = q2q3q4 · · · qs.
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If we divide both sides by q2 we have that

p3(±p4 · · · pr) = q3q4 · · · qs.

We can continue in this manner eliminating one prime on each side at every

step. If r = s then this process will lead to the conclusion that p1 = ±q1,
p2 = ±q2, . . . , pr = ±qr.

Towards a contradiction assume that r > s. Then after s steps we will

eliminate all the qj and will have an equation of the form

±ps+1ps+2 · · · pr = 1.

This implies that pr | 1. Since the only divisors of 1 are ±1, this implies

that pr = ±1. But pr is prime, so this is not possible. We arrive at a similar

contradiction if we assume that r < s. Thus r = s as desired.

Corollary 1.3.9 Every integer n > 1 can be written in one and only one

way in the form n = p1p2p3 · · · pr, where the pi are positive primes such

that p1 ≤ p2 ≤ p3 ≤ · · · ≤ pr.

Example 1.3.1 a Express 5040 as a product of primes.

Answer

5040 = 56 · 9
= 8 · 7 · 3 · 3
= 2 · 2 · 2 · 7 · 3 · 3

Exercise 1.3.1 b,c Express each number as a product of primes.

(b) -2345

(c) 45,670
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Exercise 1.3.4 Primes p and q are said to be twin primes if q = p + 2.

For example, 3 and 5 are twin primes; so are 11 and 13. Find all pairs of

positive twin primes less than 200.

Primality Testing

We are often concerned with determining whether a given number is prime.

The following theorem gives us a way to do this for relatively small numbers.

Thoerem 1.3.10 Let n > 1. If n has no positive prime factor less

than or equal to
√
n, then n is prime.

Proof of Theorem 1.3.10 : Towards a contradiction, suppose that n is not

prime. Then n is composite which implies that n has at least two positive

prime factors, say p1 and p2, so that n = p1p2k for some k ∈ Z. We assume

that n has no positive prime factors less than or equal to
√
n, so we must

have that p1 >
√
n and p2 >

√
n. Thus,

n = p1p2k ≥ p1p2 >
√
n
√
n = n.

We cannot have n strictly greater than itself. Since assuming that n is not

prime leads to a contradiction, we conclude that n is prime.

Example 1.3.3 a Is 701 prime?

Answer : Theorem 1.3.10 tells us that 701 is prime if none of the prime

numbers less than or equal to
√

701 = 26.476 divide 701. So we need to

check if 2, 3, 5, 7, 11, 13, 17, 19, and 23 divide 701. None of these divide 701,

so 701 is prime.

Exercise 1.3.3 b,c,d Which of the following numbers are prime?
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(b) 1009

(c) 1949

(d) 1951
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§2.1 CONGRUENCE AND CONGRUENCE CLASSES

Congruence

Let a, b, n be integers with n > 0. Then a is congruent to b modulo

n , written a ≡ b mod n, if n | a− b.

Example 17 ≡ 5 mod 6 because 6 | (17− 5) = 12

Example 7 ≡ −3 mod 5 because 5 | (7− (−3)) = 10

Exercise Prove that a ≡ b mod n if and only if a = b+nk for some k ∈ Z.

Exercise 2.1.1 a,b Show that ap−1 ≡ 1 mod p for the given p and a:

(a) a = 2, p = 5

(b) a = 4, p = 7

Exercise 2.1.3 Every published book has a ten-digit ISBN-10 number

(on the back cover or the copyright page) that is usually of the form x1 −
x2x3x4−x5x6x7x8x9−x10 (where each xi is a single digit). Sometimes the

last digit of an ISBN number is the letter X. In such cases, treat X as if

it were the number 10. The first 9 digits identify the book. The last digit

x10 is a check digit ; it is chose so that

10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + x10 ≡ 0 mod 11

If an error is made when scanning or keying an ISBN number into a com-

puter, the left side of the congruence will not be congruent to 0 modulo

11, and the number will be rejected as invalid. Which of the following are

apparently valid ISBN numbers?

(a) 3-540-90518-9
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(b) 0-031-10559-5

(c) 0-385-49596

Congruence as an Equivalence Relation

One goal of this section is to show that congruence is an equivalence relation.

In fact, if you look at the congruence sign, it looks a lot like an equals sign.

There are several properties of equality that are important.

reflexive: a = a for every integer a

symmetric: if a = b then b = a

transitive: if a = b and b = c, then a = c

Whenever a relation, that is the way we relate two elements together, satisfies

the three conditions above, it is called an equivalence relation. Thus equality

is an equivalence relation. It turns out that congruence is also an equivalence

relation. It is reflexive, symmetric, and reflexive.

Theorem 2.1.1 Congruence as an Equivalence Relation Let n

be a positive integer. For all a, b, c ∈ Z,

1. a ≡ a mod n;

2. if a ≡ b mod n, then b ≡ a mod n;

3. if a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Proof of Theorem 2.1.1 : We need to show that congruence is reflexive, sym-

metric, and transitive.

reflexive: We want to show that a ≡ a mod n, which is the same as show-

ing that n | a−a. But a−a = 0 and every integer divides 0. So a ≡ a mod n.
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symmetric: Now suppose that a ≡ b mod n. We want show that this implies

b ≡ a mod n. Since a ≡ b mod n then n | a− b so a− b = nk for some k ∈ Z.

Then,

b− a = −(a− b) = −(nk) = n(−k).

So n | b− a, thus b ≡ a mod n.

transitive: Now suppose that a ≡ b mod n and b ≡ c mod n. We want to

show that n | a − c. Then a ≡ b mod n implies a − b = nk for some k ∈ Z
and b ≡ c mod n implies b− c = nl for some l ∈ Z. Then

a− c = a− b+ b− c = nk + nl = n(k + l).

So n | a− c, thus a ≡ c mod n.

Congruence Classes

Now we will discuss important properties of congruence classes.

Theorem 2.1.2 If a ≡ b mod n and c ≡ d mod n, then

1. a+ c ≡ b+ d mod n

2. ac ≡ bd mod n

Proof of Theorem 2.1.2 : First we show that condition 1 holds. This means

we need to show that n | (a+ c)− (b+d), that is, there exists some integer m

so that (a+ c)− (b+ d) = nm. Since a ≡ b mod n we have that n | (a− b) so

a− b = nk for some k ∈ Z. Similarly, since c ≡ d mod n we have n | (c− d)

so c− d = nl for some l ∈ Z. Now we have:
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(a+ c)− (b+ d) = a+ c− b− d
= (a− b) + (c− d)

= nk + nl

= n(k + l)

If we let k+l = m then we see that n | (a+c)−(b+d) so a+c ≡ b+d mod n

as desired.

Next we want to show that condition 2 holds. Thus, we must show that

n | (ac− bc). Note that

ac− bd = ac+ 0− bd
= ac− bc+ bc− bd
= c(a− b) + b(c− d)

= c(nk) + b(nt)

= cnk + bnt

= n(ck + bt)

It follows that n | (ac− bd) so ac ≡ bd mod n.

Exercise 2.1.2 Answer the following:

(a) If k ≡ 1 mod 4, then what is 6k + 5 congruent to modulo 4?

(b) If r ≡ 3 mod 10 and s ≡ −7 mod 10, then what is 2r + 3s congruent

to modulo 10?

Page 29 of 65



Intro to Modern Algebra Part 1a: Course Notes

Let a and n be integers with n > 0. The congruence class of a

modulo n (denoted [a]) is the set of all those integers that are congruent

to a modulo n, that is,

[a] = {b | b ∈ Z and b ≡ a mod n}.

This is sometimes denoted [a]n.

Example In congruence modulo 5, [9] = {9 + 5k | k ∈ Z}

Example In congruence modulo 11, [9] = {9 + 11k | k ∈ Z}

Note that above we could have used the notation of [9]5 and [9]11.

Theorem 2.1.3 a ≡ c mod n if and only if [a] = [c].

Proof of Theorem 2.1.3 : First we will prove that if a ≡ c mod n then [a] = [c].

To show [a] = [c] we will show that [a] is a subset of [c], [a] ⊆ [c], and then

that [c] is a subset of [a], [c] ⊆ [a]. Let b ∈ [a]. Then b ≡ a mod n and since

a ≡ c mod n by transitivity b ≡ c mod n. Then b ∈ [c] and [a] ⊂ [c].

Now let b ∈ [c]. Then b ≡ c mod n and we have a ≡ c mod n implies

c ≡ a mod n implies b ≡ a mod n by symmetry and transitivity respectively.

So b ∈ [a] and it follows that [c] ⊆ [c]. We can conclude that [a] = [c].

Now suppose that [a] = [c]. Since a ≡ a mod n by reflexivity, we have a ∈ [a],

and thus a ∈ [c]. By definition, this implies that a ≡ c mod n.
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Corollary 2.1.4 Two congruence classes modulo n are either disjoint

or identical.

Proof of Corollary 2.1.4 Suppose [a] and [c] are disjoint. This means that

[a] 6= [c]. Suppose the two congruence classes share an element, that is [a]∩ [c]

is nonempty. This means there is an integer b so that b ∈ [a] and b ∈ [c], so

b ≡ a mod n and n ≡ c mod n. Since congruence is an equivalence relation,

from Theorem 2.1.1 we have that a ≡ c mod n. Thus [a] = [c].

Exercise 2.1.12 If p ≥ 5 and p is prime, prove that [p] = [1] or [p] = [5]

in Z/6Z

Example 2.1.6 If a ≡ b mod n and k | n, is it true that a ≡ b mod k?

Justify your answer.

Exercise 2.1.8 Prove that every odd integer is congruent to 1 modulo 4

or 3 modulo 4.

Exercise 2.1.9 Prove that

(a) (n− a)2 ≡ a2 mod n

(b) (2n− a)2 ≡ a2 mod 4n

The set of all congruence classes modulo n is denoted Z/nZ which is read

“Z mod n.” This is often denoted Zn as well. The book uses this notation.

Note that the elements in Z/nZ are congruence classes, NOT single integers.

For example, [5] ∈ Z/nZ but 5 6∈ Z/nZ. Also note that,

The set Z/nZ has exactly n elements.
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Example The set Z/3Z has three elements, [0],[1], and [2].

Exercise Two students were having a debate about the set Z/6Z. Both

agreed that Z/6Z had six elements. The first student said that the ele-

ments were {[1], [2], [3], [4], [5], [6]} while the second said that the elements

were {[0], [1], [2], [3], [4], [5]}. Which student is correct?

Exercise 2.1.16: If [a] = [1] in Z/nZ, prove that (a, n) = 1. Show by

example that the converse may be false.
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§2.2 MODULAR ARITHMETIC

Modular Arithmetic

In the last section we introduced congruence and discussed some of its prop-

erties. Now we focus on how to perform operations like addition and multi-

plication with congruence classes. We start with the following definition.

Addition and multiplication in Z/nZ are defined by

[a]⊕ [b] = [a+ c] and [a]� [c] = [ac].

Example Compute [3]� [7] in Z/8Z

Answer : From the above definition we have [3]� [7] = [3 · 7] = [21] = [5].

Example Compute [123]⊕ [157] in Z/122Z.

Answer : Note that [123] = [1] in Z/122Z and [157] = [35] in Z/122Z. So

[123] + [157] = [1] + [35] = [36].

Example Determine the addition and multiplication tables for Z/3Z

Answer : The addition and multiplication tables for Z/3Z are given below:

⊕ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

� [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]
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Exercise 2.2.1 Write out the addition and multiplication tables for the

following:

(a) Z/2Z

(b) Z/4Z

(c) Z/7Z

(d) Z/12Z

The same exponent notation used in ordinary arithmetic is used in

Z/nZ. If [a] ∈ Z/nZ, and k is a positive integer, then [a]k denotes the

product

[a]� [a]� · · · � [a]︸ ︷︷ ︸
k factors

Example Find [3]2 and [3]4 in Z/5Z

Answer :

[3]2 = [3]� [3] = [9] = [4] and [3]4 = [3]� [3]� [3]� [3] = [81] = [1]
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Properties of Modular Arithmetic

Theorem 2.2.7 For any congruence classes [a], [b], and [c] ∈ Z/nZ,

we have the following properties.

1. If [a] ∈ Z/nZ and [b] ∈ Z/nZ, then [a]⊕ [b] ∈ Z/nZ.

2. [a]⊕ ([b]⊕ [c]) = ([a]⊕ [b])⊕ [c].

3. [a]⊕ [b] = [b]⊕ [a].

4. [a]⊕ [0] = [a] = [0]⊕ [a].

5. For each [a] ∈ Z/nZ, the equation [a] ⊕ X = [0] has a solution in

Z/nZ.

6. If [a] ∈ Z/nZ and [b] ∈ Z/nZ, then [a]� [b] ∈ Z/nZ.

7. [a]� ([b]� [c]) = ([a]� [b])� [c].

8. [a]� ([b]⊕ [c]) = [a]� [b]⊕ [a]� [c] and

([a]⊕ [b])� [c] = [a]� [c]⊕ [b]� [c].

9. [a]� [b] = [b]� [a].

10. [a]� [1] = [a] = [1]� [a].

Exercise 2.2.10 Prove parts 3,7,8, and 9 of Theorem 2.2.7.

Note that when the context is clear, we will use + and · to mean ⊕ and

� respectively. Similarly, we will sometimes use 1 to mean [1] when there is

little room for confusion.

Solving Equations with Congruence Classes

Since Z/nZ has exactly n elements, when we can solve equations in with

congruence classes we can substitute each of these n elements to see which

ones are solutions. Consider the following example:
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Example: Find all solutions of x3 + 2x+ 3 = 0 in Z/5Z

Answer :

x = 0

(0)3 + 2(0) + 3 = 0 + 0 + 3 = 3

x = 1

(1)3 + 2(1) + 3 = 1 + 2 + 3 = 6 = 1

x = 2

(2)3 + 2(2) + 3 = 8 + 4 + 3 = 15 = 0

x = 3

(3)3 + 2(3) + 3 = 27 + 6 + 3 = 36 = 1

x = 4

(4)3 + 2(4) + 3 = 64 + 8 + 3 = 75 = 0

So [2] and [4] are solutions to x3 + 2x+ 3 in Z/5Z.

Exercise 2.2.3: Solve the equation x2 = [1] in Z/8Z.

Exercise 2.2.4: Solve the equation x4 = [1] in Z/5Z.

Exercise 2.2.7: Solve the equation x3 ⊕ x2 ⊕ x⊕ [1] = [0] in Z/8Z.

Exercise 2.2.8: Solve the equation x3 + x2 = [2] in Z/10Z.
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§2.3 THE STRUCTURE OF Z/pZ (p PRIME) AND Z/nZ

Structure of Z/pZ when p is Prime

It has been established that Z has nice properties that are shared with many

of the sets Z/nZ. However, not all nice properties are shared. For example,

in the integers, the if we take the product of two nonzero integers, the result

is always nonzero. In Z/6Z however, 2 · 3 = 0 even though 2 and 3 are both

nonzero. Yet in Z/7Z the product of two nonzero integers is always nonzero.

In this section, we will explore the properties of Z/pZ where p is prime. We

begin with the following theorem.

Theorem 2.3.8 If p > 1 is an integer, then the following conditions

are equivalent.

1. p is prime

2. For any a 6= 0 in Z/pZ, the equation ax = 1 has a solution in Z/pZ

3. Whenever bc = 0 in Z/nZ, then b = 0 or c = 0.

Proof of Theorem 2.3.8 First we show that if p is prime, the equation ax = 1

has a solution in Z/pZ for any nonzero a. Since a is nonzero, we can say

that a 6≡ 0 mod p. Thus p does not divide a. Consider (a, p). Since p does

not divide a the greatest common divisor of p and a must be 1. By Bezout’s

Identity, we can write 1 as a linear combination of a and p. So we have

1 = au + pv for some integers u and v. Then au − 1 = −pv = p(−v), thus

au ≡ 1 mod p. This implies that [au] = [1] in Z/pZ. So [a][u] = [au] = 1,

thus x = [u] is a solution of [a]x = [1].

Now suppose that bc = 0 in Z/pZ. if b is zero there is nothing to prove. If

b 6= 0, then by assumption, the equation bx = 1 has a solution for some

x ∈ Z/pZ. Then we have

0 = x · 0 = x(bc) = (xb)c = (bx)c = 1 · c = c.
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So either b = 0 or c = 0 as desired.

Suppose that b, c are any integers such that p | bc. Then bc ≡ 0 mod p, so we

have that

[b][c] = [b][c] = [0] in Z/pZ.

Thus by assumption [b] = [0] or [c] = [0]. This implies that b ≡ 0 mod p or

c ≡ 0 mod p, so p | b or p | c. It follows that p is prime.

Exercise Verify Theorem 2.3.2 for p = 5. Try again for p = 4. What do

you observe?

Note that when n is not prime, ax = 1 does not need to have a solution in

Z/nZ. For example, 2x = 1 does not have a solution in Z/4Z.

Theorem 2.3.9 Let a and n be integers with n > 1. Then the equation

[a]x = [1] has a solution in Z/nZ if and only if (a, n) = 1 in Z.

Multiplicative Cancellation Law Let p be a prime and a, b, c ∈ Z/pZ
with a 6= [0]p. Then ab = ac if and only if b = c.

Exercise Verify that the cancellation law holds in Z/5Z but does not hold

in Z/4Z.

Units

An element a in Z/nZ is called a unit if the equation ax = 1 has a

solution. Equivalently, a is a unit if there is an element b in Z/nZ such

that ab = 1. Here b is the inverse of a.
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Theorem 2.3.10 Let a and n be integers with n > 1. Then

[a] is a unit in Z/nZ if and only if (a, n) = 1 in Z.

Example 2.3.1 a Find all of the units in Z/7Z

Answer : Theorem 2.3.10 says that [a] is a unit in Z/7Z if (a, 7) = 1. So

we look for all of the numbers a ∈ {0, 1, 2, 3, 4, 5, 6} that are relatively

prime to 7. Each nonzero number is this set is relatively prime to 7, so

[1], [2], [3], [4], [5], [6] are all units in Z/7Z.

Exercise 2.3.1 b,c,d Find all of the units in the following sets.

(a) Z/8Z

(b) Z/9Z

(c) Z/10Z

Zero Divisors

A nonzero element a of Z/nZ is called a zero divisor if the equation

ax = 0 has a nonzero solution (that is, if there is a nonzero element c in

Z/nZ such that ac = 0.)
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Example 2.3.2 b Find all of the zero divisors in Z/8Z

Answer : Consider the following multiplication table for Z/8Z:

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

We see that the zero divisors of Z/8Z are 0, 2, 4, 6.

Exercise 2.3.2 a,c,d Find all the zero divisors in the following sets:

(a) Z/7Z

(c) Z/9Z

(d) Z/10Z

Exercise 2.3.3 Based on Exercise 2.3.1 and 2.3.2, make a conjecture

about units and zero divisors in Z/nZ.

Exercise 2.3.9 a,b Answer the following.

(a) If a is a unit in Z/nZ, prove that a is not a zero divisor.

(b) If a is a zero divisor in Z/nZ, prove that a is not a unit. [Hint : Think

contrapositive in part (a).]
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§3.1 RINGS

A ring is a nonempty set R equipped with two operations (usually

written as addition and multiplication) that satisfy the following axioms.

For all a, b, c ∈ R:

1. [closure for addition] If a ∈ R and b ∈ R, then a+ b ∈ R

2. [associative addition] a+ (b+ c) = (a+ b) + c.

3. [commutative addition] a+ b = b+ a.

4. [additive identity ] There is an element 0R in R such that

a+ 0R = a = 0R + a for every a ∈ R.

5. For each a ∈ R, the equation a+ x = 0R has a solution in R.

6. [closure for multiplication] If a ∈ R and b ∈ R, then ab ∈ R.

7. [associative multiplication] a(bc) = (ab)c.

8. [distributive laws ] a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

A commutative ring is a ring R that satisfies the following:

ab = ba for all a, b ∈ R.

A ring with identity is a ring R that contains an element 1R satis-

fying the following:

a1R = a = 1Ra for all a ∈ R.

Example The integers Z with the usual addition and multiplication

are a commutative ring with identity.
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Example The set of even integers 2Z = {2k | k ∈ Z} is a commutative

ring without identity.

Example The set of all functions from R to R is a commutative ring with

identity.

Example The set of all n× n matrices with entries in R is a noncommu-

tative ring with identity.

Exercise 3.1.1 The following subsets of Z (with ordinary addition and

multiplication) satisfy all but one of the axioms for a ring. In each case,

which axiom fails?

(a) The set S of all odd integers and 0.

(b) The set of nonnegative integers.

Example Let R = {0, 1} and a, b ∈ R. Define addition and multiplication

on R by:

+ 0 1

0 0 1

1 1 a

+ 0 1

0 0 0

1 0 b

For which values of a and b is (R,+, ·) a ring?

Answer : Since 1 needs to have an additive inverse, R will not be a ring

is a = 1. Suppose now that a = 0. If b = 1, then (R,+, ·) is Z/2Z,⊕,�)

with the regular addition and multiplication so R is a ring. If b = 0, then

xy = 0 for all x, y ∈ R, and axioms 4-8 hold. Axioms 1-4 hold because the

addition is the same as in Z/2Z. So R is a ring.

In both cases R is commutative. If b = 1, then 1 is an identity. If b = 0,
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R does not have an identity.

Example Let R = {0, 1}. Define an addition and multiplication on R by:

� 0 1

0 1 0

1 0 1

� 0 1

0 0 1

1 1 1

Is (R,�,�) a ring?

Answer : Note that 1 is an additive identity, so 0R = 1. Also 0 is a multi-

plicative identity, so 1R = 0. Using the symbols 0R and 1R we can write

the addition and multiplication table as follows:

� 0R 1R

0R 0R 1R

1R 1R 0R

� 0R 1R

0R 0R 0R

1R 0R 1R

So most entries in the table are determined by the fact that 0R and 1R are

the additive and multiplicative identity, respectively. Also

1R � 1R = 0 � 0 = 1 = 0R and 0R � 0R = 1 � 1 = 1 = 0R.

Observe that the new tables are the same as for Z/2Z. So (R,�,�) is a

ring.

Exercise 3.1.18 Define a new multiplication in Z by the rule ab = 1 for

all a, b ∈ Z. With ordinary addition and this new multiplication, is Z a

ring?
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Integral Domains

An integral domain is a commutative ring R with identity 1R 6= 0R that

satifies the following:

Whenever a, b ∈ R and ab = 0R, then a = 0R or b = 0R.

Example The integers Z are an integral domain.

Example Z/pZ is an integral domain if p is prime

Example Z/6Z is not an integral domain because 3 · 2 = 0 where 3 and 2

are both nonzero.

Example 3.1.22 Define a new additon ⊕ and multiplication � on Z by

a⊕ b = a+ b− 1 and a� b = a+ b− ab,

where the operations on the right-hand side of the equal signs are ordinary

addition, subtraction, and multiplication. Prove that, with the new oper-

ations ⊕ and �, Z is an integral domain.

Proof : We must show that with these new operations Z satisfies the 8

criteria for being a ring. Then we show that it is an integral domain. Let

a, b, c ∈ Z.

1. Since a, b ∈ Z, we have a ⊕ b = a + b − 1 ∈ Z so there is closure

under the addition.
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2. Note that,

a⊕ (b⊕ c) = a⊕ (b+ c− 1)

= a+ (b+ c− 1)− 1

= (a+ b− 1) + c− 1

= (a+ b− 1)⊕ c
= (a⊕ b)⊕ c

so the addition is associative.

3. We have that

a⊕ b = a+ b− 1 = b+ a− 1 = b⊕ a

so commutativity of addition holds.

4. If we set 0R = 1 we have that

a⊕ 0R = a⊕ 1− 1 = a

so 1 is the additive identity.

5. Consider the equation

1 = 0R = a⊕ x = a+ x− 1.

If we solve this equation for x we have x = 2−a ∈ Z, so this property

holds.

6. Note that a� b = a + b− ab ∈ Z since a, b ∈ Z so there is closure

for the multiplication.

7. We have

a� (b� c) = a� (b+ c− bc)
= a+ (b+ c− bc)− a(b+ c− bc)
= a+ b+ c− ab− bc− ac+ abc

and
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(a� b)� c = (a+ b− ab)� c
= (a+ b− ab) + c− (a+ b− ab)c
= a+ b+ c− ab− ac− bc+ abc.

So we see that a� (b� c) = (a� b)� c and thus we have associativity

of the multiplication.

8. For the distributive property, note that

a� (b⊕ c) = a� (b+ c− 1)

= a+ b+ c− 1− a(b+ c− 1)

= 2a+ b+ c− ab− ac− 1

= (a+ b− ab) + (a+ c− ac)− 1

= (a� b) + (a� c)− 1

= (a� b)⊕ (a� c)

and

(a⊕ b)� c = (a+ b− 1)� c
= a+ b− 1 + c− (a+ b− 1)c

= a+ b+ 2c− ac− bc− 1

= (a+ c− ab) + (b+ c− bc)− 1

= (a� c) + (bċ)− 1

= (a� c)⊕ (b� c)

so the distributive properties hold.

It follows that (Z,⊕,�) is a ring. Now we want to show that it is an

integral domain. Since

a� b = a+ b− ab = b+ a− ba = b� a
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it is a commutative ring. Let IR = 0. Then

a� IR = a� 0 = a+ 0− a · 0 = a

and

IR � a = 0� a = 0 + a− 0 · a = a

so IR = 0 is the multiplicative identity. Thus (Z,⊕,�) is a commuta-

tive ring with identity.

To show it is an integral domain, assume a�b = 0R. Then a+b−ab =

1. But a+ b− ab = 1 implies 0 = ab− a− b+ 1 = (a− 1)(b− 1). So

(a − 1) = 0 or (b − 1) = 0. So a = 1 = 0R or b = 1 = 0R. It follows

that the ring is an integral domain.

Exercise 3.1.24 Define a new addition and multiplication on Z by

a⊕ b = a+ b− 1 and a� b = ab− (a+ b) + 2.

Prove that with these new operations Z is an integral domain.

Fields

A field is a commutative ring R with identity 1R 6= 0R that satisfies

the following:

For each a 6= 0R in R, the equation ax = 1R has a solution inR.

Example The rational numbers Q are a field.

Example The complex numbers C are a field.

Example The real numbers R are a field.
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Exercise 3.1.2 Let R = {0, e, b, c} with addition and multiplication de-

fined by the tables below. Assume associativity and distributivity and

show that R is a ring with identity. Is R commutative? Is R a field?

+ 0 e b c

0 0 e b c

e e 0 c b

b b c 0 e

c c b e 0

· 0 e b c

0 0 0 0 0

e 0 e b c

b 0 b b 0

c 0 c 0 c

Exercise 3.1.3 Let F = {0, e, a, b} with operations given by the following

tables. Assume associativity and distributivity and show that F is a field.

+ 0 e a b

0 0 e a b

e e 0 b a

a a b 0 e

b b a e 0

· 0 e a b

0 0 0 0 0

e 0 e a b

a 0 a b e

b 0 b e a

Exercise 3.1.4 Find matrices A and C in M(R) such that AC = 0, but

CA 6= 0, where 0 is the zero matrix. [Hint : Example 6.]

Exercise 3.1.29 The addition table and part of the multiplication table

for a three-element ring are given below. Use the distributive laws to com-

plete the multiplication table.

+ r s t

r r s t

s s t r

t t r s

· r s t

r r r r

s r t

t r Page 48 of 65
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Direct Products of Rings

Theorem 3.1.1 Let R and S be rings. Define addition and multipli-

cation on the Cartesian product R× S by

(r, s) + (r′, s′) = (r + r′, s+ s′) and (r, s)(r′, s′) = (rr′, ss′).

Then:

1. R× S is a ring;

2. 0R×S = (0R, 0S);

3. −(r, s) = (−r,−s) for all r ∈ R, s ∈ S;

4. if R and S are both commutative, then so is R× S;

5. if both R and S have an identity, then R × S has an identity and

1R×S = (1R, 1S).

Example 3.1.15 b Write out the addition and multiplication tables

for Z/2Z× Z/2Z.

+ (0,0) (1,1) (1,0) (0,1)

(0,0) (0,0) (1,1) (1,0) (0,1)

(1,1) (1,1) (0,0) (0,1) (1,0)

(1,0) (1,0) (0,1) (0,0) (1,1)

(0,1) (0,1) (1,0) (1,1) (0,0)

· (0,0) (1,1) (1,0) (0,1)

(0,0) (0,0) (0,0) (0,0) (0,0)

(1,1) (0,0) (1,1) (1,0) (0,1)

(1,0) (0,0) (1,0) (1,0) (0,0)

(0,1) (0,0) (0,1) (0,0) (0,1)

Exercise 3.1.9 a Let R be a ring and consider the subset R∗ of R × R
defined by R∗ = {(r, r) | r ∈ R}. If R = Z/6Z, list the elements of R∗.

Exercise 3.1.15 a,c Write out the addition and multiplication tables for:
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(a) Z/2Z× Z 3Z

(c) Z/3Z× Z/3Z

Subrings

Theorem 3.2 Suppose that R is a ring and that S is a subset of R

such that

1. S is closed under addition (if a, b ∈ S, then a+ b ∈ S);

2. S is closed under multiplication (if a, b ∈ S, then ab ∈ S);

3. 0R ∈ S;

4. If a ∈ S, then the solution of the equation a+ x = 0R is in S.

Then S is a subring of R.

Example The subset S = {0, 3} of Z/6Z is closed under addition and mul-

tiplication (0+0 = 0; 0+3−3; 3+3 = 0; similarly 0·0 = 0 = 0·3; 3·3 = 3).

By definition of S we have 0 ∈ S. Finally the equation 0 + x = 0 has so-

lution x = 0 ∈ S, and the equation 3 + x = 0 has solution x = 3 ∈ S.

Therefore, S is a subring of Z/6Z by Theorem 3.1.2.

Example Z is a subring of Q

Example 3.1.5 a Is the following subset a subring of M(R)? All matrices

of the form

(
0 r

0 0

)
with r ∈ Q.

Answer : Yes this is a subring without identity since every product is the

zero matrix.
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Subfields

If S is a subring of R and S is itself a field then we say S is subfield of

R.

Example Q is a subfield of R

Example R is a subfield of Q
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§3.2 BASIC PROPERTIES OF RINGS

Arithmetic in Rings

Theorem 3.2.3 For any element a in a ring R, the equation a+x = 0R

has a unique solution.

Answer : From the 5th ring axiom, we know that the equation a+x = 0R has

at least one solution, call it u. Now we show that solution is unique. Suppose

v is another solution to a+x = 0R. Then we have a+u = 0R and a+v = 0R.

Thus,

v = 0R + v = (a+ u) + v = (u+ a) + v = u+ (a+ v) = u+ 0R = u.

It follows that u is unique.

In the equation from Theorem 3.2.3, the element x is the additive inverse

of a in R. If we let x = −a, we say that −a is the unique element of R such

that

a+ (−a) = 0R = (−a) + a.

Example In Z/6Z, the solution of the equation 2 + x = 0 is 4, so in

Z/6Z −2 = 4.

Remark In a ring b-a means b+(-a).

Theorem 3.2.4 If a+ b = a+ c in a ring R, then b = c.

Proof of Theorem 3.2.4 : If I add −a to both sides a + b = a + c and then
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using associativity and negatives show that

−a+ (a+ b) = −a+ (a+ c)

(−a+ a) + b = (−a+ a) + c

0R + b = 0R + c

b = c.

Theorem 3.2.5 For any elements a and b of a ring R,

1. a · 0R = 0R = 0R · a. In particular, 0R · 0R = 0R.

2. a(−b) = −ab and (−a)b = −ab.

3. −(a) = a.

4. −(a+ b) = (−a) + (−b).

5. −(a− b) = −a+ b.

6. (−a)(−b) = ab. If R has an identity, then

7. (−1R)a = −a.

Proof : We need to show that each of the above properties in Theorem 3.2.5

hold.

1. Since 0R + 0R = 0R, by the distributive law we have

a · 0R + a · 0R = a(0R + 0R) = a · 0R = a · 0R + 0R.

Thus a · 0R = 0R. Similarly, we have that 0R · a = 0R.

2. Note that −ab is the unique solution of the equation ab + x = 0R, so

if any other x satisfies this equation it must be equivalent to −ab. But

x = a(−b) is a solution since

ab+ a(−b) = a[b+ (−b)] = a[0R] = 0R.

Thus, a(−b) = −ab. Similarly, (−a)b = −ab.
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3. By definition, −(−a) is the unique solution of (−a) + x = 0R. But a

is a solution of this equation since (−a) + a = 0R. Hence −(−a) = a by

uniqueness.

4.Note that −(a + b) is the unique solution of (a + b) + x = 0R, but

(−a)+(−b) is also a solution. Then by commutativity of addition we have

(a+ b) + [(?a) + (−b)] = a+ (−a) + b+ (−b)
= 0R + 0R

= 0R.

Therefore, −(a+ b) = (−a) + (−b) by uniqueness.

5. Note that

−(a− b) = −(a+ (−b)) = (−a) + (−(−b)) = −a+ b

by definition of subtraction.

6. By (2) and (3) we have

(−a)(−b) = −(a(−b))
= −(−ab)
= ab.

7. By (2) we have

(−1R)a = −(1Ra) = −(a) = −a.

Exercise 3.2.1 Let R be a ring and a, b ∈ R.

(a) (a+ b)(a− b) =?

(b) (a+ b)3 =?

(c) What are the answers in parts (a) and (b) if R is commutative?
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Exercise 3.2.3 b An element e of a ring R is said to be idempotent if

e2 = e.

(a) Find all the idempotents in Z/12Z

Exercise 3.2.5 Answer the following:

(a) Show that a ring has only one zero element. [Hint : If there were more

than one, how many solutions would the equation 0R + x = 0R have?]

(b) Show that a ring R with identity has only one identity element.

(c) Can a unit in a ring R with identity have more than one inverse? Why?

Exercise 3.2.31 A Boolean ring is a ring R with identity in which

x2 = x for eery x ∈ R. For examples, see Exercises 19 and 44 in Section

3.1. If R is a Boolean ring, prove that:

(a) a+ a = 0R for every a ∈ R, which means that a = −a. [Hint : Expand

(a+ a)2.]

(b) R is commutative. [Hint : Expand (a+ b)2.]

Units and Zero Divisors

An element a in a ring R with identity is called a unit if there exists

u ∈ R such that au = 1R = ua. In this case the element u is called the

multiplicative inverse of a and is denoted a−1.

Exercise 3.2.2 Find the inverse of matrices A,B, and C in Example 7 on

page 64 of the text.
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An element a in a ring R is a zero divisor provided that

1. a 6= 0R.

2. There exists a nonzero element c ∈ R such that ac = 0R or ca = 0R.

Example Every integral domain R satisfies Axiom 11: If ab = 0R, then

a = 0R or b = 0R. In other words, the product of two nonzero elements

cannot be 0. Therefore,

An integral domain contains no zero divisors.

Integral Domains and Fields

Theorem 3.2.7 Cancellation Properties Cancellation is valid in

any integral domain R: If a 6= 0R and ab = ac in R, then b = c.

Answer : Suppose ab = ac. Then ab − bc = 0R, so that a(b − c) = 0R. Since

a 6= 0R, we must have b−c = 0R (if not, then a is a zero divisor, contradicting

Axiom 11.) Therefore, b = c.

Exercise 3.2.29 Let R be a commutative ring with identity. Prove that R

is an integral domain if and only if cancellation holds in R (that is, a 6= 0R

and ab = ac in R imply b = c.)

Exercise 3.2.21 Let R be a ring and let a be a nonzero element of R that

is not a zero divisor. Prove that cancellation holds for a; that is, prove

that

(a) If ab = ac in R, then b = c.

(b) If ba = ca in R, then b = c.

Integral Domains and Fields continued on next page. . . Page 56 of 65
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Theorem 3.2.8 Every field F is an integral domain.

Proof : Let F be a field. Then F is a commutative ring with identity. Suppose

ab = 0F . If b = 0F there is nothing to prove. If b 6= 0F , then b is a unit (since

every nonzero element of F is a unit.) Thus we have

a = a · 1F = abb−1 = 0F b
−1 = 0F .

So in each case either a = 0F or b = 0F . It follows that F is an integral

domain.

Example Show that the converse of Theorem 3.2.8 is false. That is, give

an example of an integral domain that is not a field.

Theorem 3.2.9 Every finite integral domain R is a field.

Proof : Let R be a finite integral domain where a1, a2, . . . , an are the distinct

elements of R. Suppose at 6= 0R. Consider the products ata1, ata2, ata3,

. . . , atan. If ai 6= aj then it follows that atai 6= ataj. Thus, ata1, ata2, . . . , atan

are n distinct elements of R. However, R has exactly n elements, so these

represent the elements of R, perhaps in a different order. In particular, for

some j, ataj = 1R. Thus the equation atx = 1R has a solution. Since at was

arbitrary, R is a field.
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§3.3 ISOMORPHISMS AND MAPPINGS

Isomorphic Rings

Consider the subset S = {0, 2, 4, 6, 8} of Z/10Z. If we use the addition and

multiplication of Z/10Z we see that S is a commutative ring. This is apparent

from the following tables.

+ 0 6 2 8 4

0 0 6 2 8 4

6 6 2 8 4 0

2 2 8 4 0 6

8 8 4 0 6 2

4 4 0 6 2 8

· 0 6 2 8 4

0 0 0 0 0 0

6 0 6 2 8 4

2 0 2 4 6 8

8 0 8 6 4 2

4 0 4 8 2 6

Now write out the addition and multiplication tables for Z/5Z. Label [0] as

0, [1] as 6, [2] as 2, [3] as 8, and [4] as 4. In general. What do you notice

about the tables compared to the given tables for our set S above?

In general, isomorphic rings are rings that have the same structure, in the

sense that the addition and multiplication tables of one are the same as the

other, just with the elements relabeled. This idea is intuitive for small finite

systems, but we need a definition to define isomorphisms that is easily ap-

plicable and that also works for large rings. We can do this with mappings.

When we relabel elements, we are pairing every element of one ring R with

a unique element in a new ring S. Thus, there is a function f : R → S that

assigns each r to its new label, f(r) ∈ S.

If we consider the preceding example, we have that f : Z/5Z→ S is given by

f(0̄) = 0 f(1̄) = 6 f(2̄) = 2 f(3̄) = 8 f(4̄) = 4.

There are additional properties necessary so that f can change the addition

amd multiplication tables of Z/5Z into S. We generalize these conditions
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with the following definition.

A ring R is isomorphic to a ring S, written R ∼= S, if there is a

function f : R→ S such that:

1. f is injective (if f(r) = f(r′) in S then r = r′ in R)

2. f is surjective (for each s ∈ S, there is some r so that f(r) = s)

3. f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.

In this case the function f is called an isomorphism.

Example Consider the field of K of all 2 × 2 matrices of the form(
a b

−b a

)
where a and b are real numbers. Let f : K → C by the rule

f

(
a b

−b a

)
= a+ bi.

We want to show that f defines an isomorphism.

f is injective

Suppose f

(
a b

−b a

)
= f

(
r s

−s r

)
. So by definition this implies that a +

bi = r + si in C. By the rules of equality in C, we must have a = r and

b = s. Thus in K we have(
a b

−b a

)
=

(
r s

−s r

)
so f is injective.

f is surjective

The function f is surjective because any complex number a + bi is the
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image under f of the matrix

(
a b

−b a

)
in K.

f(A+B) = f(A) + f(B)

f

[(
a b

−b a

)
+

(
c d

−d c

)]
=

(
a+ c b+ d

−b− d a+ c

)
= (a+ c) + (b+ d)i

= (a+ bi) + (c+ di)

= f

(
a b

−b a

)
+ f

(
c d

−d c

)

f(AB) = f(A)f(B)

f

[(
a b

−b a

)(
c d

−d c

)]
= f

(
ac− bd ad+ bc

−ad− bc ac− bd

)
= (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di)

= f

(
a b

−b a

)
f

(
c d

−d c

)

It follows that f is an isomorphism.

f : A→ B is a bijective mapping if f is injective and f is surjective

Example Let R be any ring and ι : R → R is the identity map given by

ι(r) = r. This is called the inclusion map. Then we have

ι(a+ b) = a+ b = ι(a) + ι(b)

and

ι(ab) = ab = ι(a)ι(b).
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Since ι is bijection, it is an isomorphism.

Exercise 3.3.1 Let f : Z/6Z→ Z/2Z× Z/3Z be the bijection given by

0→ (0, 0); 1→ (1, 1); 2→ (0, 2); → 3→ (1, 0); 4→ (0, 1); 5→ (1, 2).

Use the addition and multiplication tables of Z/6Z and Z/2Z × Z/3Z to

show that f is an isomorphism.

Exercise 3.3.2 Use tables to show that Z/2Z×Z/2Z is isomorphic to the

ring R of Exercise 2 in Section 3.1.

Exercise 3.3.4 Let S be the subring {0, 2, 4, 6, 8} of Z/10Z and let Z/5Z =

{0̄, 1̄, 2̄, 3̄, 4̄}. Show that the following bijection from Z/5Z to S is not an

isomorphism:

0̄→ 0 1̄→ 2 2̄→ 4 3̄→ 6 4̄→ 8.

Exercise 3.3.17 Show that the complex conjugation function f : C→ C
given by f(a+ bi) = a− bi is a bijection.

Exercise 3.3.19 Show that S = {0, 4, 8, 12, 16, 20, 24} is a subring of

Z/28Z. Then prove that the map f : Z/7Z→ S given by f([x]7) = [8x]28

is an isomorphism.

Exercise 3.3.5 Prove that the field R of real numbers is isomorphic to the

ring of all 2× 2 matrices of the form

(
0 0

0 a

)
, with a ∈ R. [Hint: Consider

the function f given by f(a) =

(
0 0

0 a

)
, with a ∈ R.]
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Exercise 3.3.9 If f : Z → Z is an isomorphism, prove that f is the

identity map. [Hint: What are f(1), f(1 + 1), . . . , ?]

Ring Homomorphisms

Let R and S be rings. A function f : R → S is said to be a homo-

morphism if

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.

Example We define the zero map between two rings R and S given by

z : R → S given by z(r) = 0 for every r ∈ R is a homomorphism because

for any a, b ∈ R

z(a+ b) = 0 = 0 + 0 = z(a) + z(b)

and

z(ab) = 0 = 0 · 0 = z(a)z(b).

When R and S both contain nonzero elements, then the zero map is nei-

ther injective nor surjective.

Example 11 Consider Z/8Z. The units are {1, 3, 5, 7}. Since being a

unit is preserved under isomorphism, any ring isomorphic to Z/8Z will also

have four units. Thus, Z/8Z is not isomorphic to any ring with less than

4 units. In particular, Z/8Z is not isomorphic to Z/4Z × Z/2Z because

there are only two units in Z/4Z× Z/2Z.

Theorem 3.3.10 Let f : R→ S be a homomorphism of rings. Then

1. f(0R) = 0S

2. f(−a) = −f(a) for every a ∈ R
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3. f(a− b) = f(a)− f(b) for all a, b ∈ R.

If R is a ring with identity and f is surjective, then

1. S is a ring with identity f(1R).

2. Whenever u is a unit in R, then f(u) is a unit in S and f(u)−1 =

f(u−1).

Corollary 3.3.11 If f : R → S is a homomorphism of rings, then

the image of f is a subring of S where the image of f is given by

Imf = {s ∈ S | s = f(r) for some r ∈ R} = {f(r) | r ∈ R}.

Example 3.3.11 a State at least one reason why f : R → R with

f(x) =
√
x is not a homomorphism.

Answer : Let a, b ∈ R, then f(a) + f(b) =
√
a+
√
b and f(a+ b) =

√
a+ b.

So we see that f(a+ b) 6= f(a) + f(b).

Exercise 3.3.11 b,c,d State at least one reason why the given function

is not a homomorphism.

(b) g : E → E where E is the ring of even integers and f(x) = 3x.

(c) h : R→ R and f(x) = 2x

(d) k : Q→ Q where k(0) = 0 and k

(
a

b

)
=
b

a
if a 6= 0.

Exercise 3.3.12 Which of the following functions are homomorphisms?

(a) f : Z→ Z defined by f(x) = −x.
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(b) f : Z/2Z→ Z/2Z defined by f(x) = −x

(c) g : Q→ Q defined by g(x) =
1

x2 + 1

(d) h : R→MR defined by h(a) =

(
a 0

a 0

)
.

(e) f : Z/12Z → Z/4Z, defined by f([x]12) = [x]4, where [u]n denotes the

class of the integer u in Z/nZ

Example 3.3.15 Let f : R → S be a homomorphism of rings. If r is a

zero divisor in R, is f(r) a zero divisor in S?

Exercise 3.3.10 If R is a ring with identity and f : R → S is a homo-

morphism from R to a ring S, prove that f(1R) is an idempotent in S.

[Idempotents were defined in Exercise 3.2.3.]

Preserving Properties under Mappings

Suppose that f : R → S is an isomorphism and the elements a, b, c, . . . of R

have a particular property. If the elements of f(a), f(b), f(c), . . . of S have

the same property then the property is preserved by isomorphism. For

example, the property of being a zero element or being the identity element is

preserved by isomorphism. One important idea with properties we know are

invariant, is that we can use them to show that two rings are not isomorphic.

Example 13 Suppose R is a commutative ring and f : R → S is an

isomorphism. Then for any a, b ∈ R we have ab = ba in R. Thus in S,

f(a)f(b) = f(ab) = f(ba) = f(b)f(a).

Example 3.3.34 a If f : R → S is an isomorphism of rings, is a ∈ R a

zero divisor preserved by the isomorphism?
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Exercise 3.3.34 b,c If f : R → S is an isomorphism of ring, which of

the following properties are preserved by this isomorphism? Justify your

answers.

(b) a ∈ R is idempotent

(c) R is an integral domain

Exercise 3.3.35 f Show that Z/4Z×Z/4Z and Z/16Z are not isomorphic.
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