Lesson 2: Force and Its Representation

What is Force? A force is a push or pull upon an object resulting from the object's interaction with another object. Forces only exist as a result of an interaction. Forces are measured in units called Newton's because of Isaac Newton. One Newton is the amount of force required to give a 1 - kg mass an acceleration of $1m/s^2$. Thus we can say:

$$1Newton = 1kg \cdot m/s^2.$$

Another thing to note is that force is a vector quantity. It has <u>BOTH</u> magnitude and a direction. We can use diagrams with vectors to describe the forces acting on an object.

<u>Types of Forces</u> - There are several type of forces. The first thing to note is that forces fall into two broad types of categories: contact forces and action-at-a-distance forces.

<u>Contact forces</u> are those types of forces that result when two interacting objects are perceived to be physically contacting or touching each other.

Action-at-a-distance forces are those types of forces that result when the two interacting objects are not in physical contact with each other, yet are able to exert a push or pull despite their physical separation.

Two important examples of Action-at-a-distance forces are electricity and magnetism. Now we look at a table with other types of frequently encountered forces and their descriptions.

Type of Force	Description of Force	Category of Force
Applied Force	a force that is applied to an object by another	Contact
	person or another object	
Gravity Force	force with which the earth, moon, or other	Action-at-a-distance
	massively large object attracts another ob-	
	ject towards itself	
Normal Force	support force exerted upon an object that is	Contact
	in contact with another stable object	
Friction Force	force exerted by a surface as an object moves	Contact
	across it or makes an effort to move across it	
Air Resistance Force	frictional force that acts upon objects as they	Contact
	travel through the air	
Tension Force	forc transmitted through a string, rope, cable	Contact
	or wire when it is pulled tight by forces acting	
	from opposite ends	
Spring Force	force exerted by a compressed or stretched	Contact
	spring upon any object that is attached to it	

Free Body Diagrams

A <u>Free-Body Diagram</u> is a diagram used to show the relative magnitude and direction of all forces acting upon an object in a given situation. In the diagrams, the size of the arrow reflects the magnitude of the force

ex.1 A math book on a table is pushed to the left and comes to a stop.
ex.2 an egg is free-falling from a nest in a tree, neglect air resistance
ex.3 a girl is suspending motionless from the ceiling by two ropes
ex.4 a car is coasting to the right and slowing down, neglect air resistance