(1) True or False: Given two differentiable functions, f and g, the derivative of their product is equal to the product of their derivatives, i.e. $(f g)^{\prime}=f^{\prime} g^{\prime}$.

○ True
\bigcirc False
(2) Consider the function $y=3 x^{5} e^{x}$. If we write $y=f g$ what is an appropriate choice for f and g ?

○ $f=3, g=e^{x}$
$f=3 x^{5}, g=e^{x}$
$f=3 x^{5}, g=x^{5} e^{x}$

- None of the above
(3) Find the derivative of $y=3 x^{5} e^{x}$.
$y^{\prime}=15 x^{4} e^{x}$
$y^{\prime}=3 x^{5}+15 x^{4} e^{x}$
$y^{\prime}=3 x^{5} e^{x}+15 x^{4}$
- None of the above
(4) Which tool(s) of differentiation can be used to find y^{\prime} where $y=(3 x+6)(x-5) ?$Power ruleProduct rule
O Both the power rule and the produce rule
O None of the above
(5) True of False: Given two differentiable functions, f and g, the derivative of their quotient is equal to the quotient of their derivatives, i.e. $\left(\frac{f}{g}\right)=\frac{f^{\prime}}{g^{\prime}}$.
\bigcirc True
\bigcirc False
(6) Consider the function $y=\frac{6 \sqrt{x}-5}{10 x^{2}}$. If we write $y=\frac{f}{g}$ what is an appropriate choice for f and g ?
$f=6 \sqrt{x}, g=10 x^{2}$
○ $f=6 \sqrt{x}-5, g=10 x$
$f=\sqrt{x}-5, g=10 x^{2}$
- None of the above
(7) Find the derivative of $y=\frac{9 x}{x^{3}-7 x+1}$.
$\bigcirc \frac{9}{3 x^{2}-7}$
$\frac{-9\left(2 x^{3}-1\right)}{\left(x^{3}-7 x+1\right)^{2}}$
$\frac{3\left(12 x^{3}-42 x+3\right)}{\left(x^{3}-7 x+1\right)^{2}}$
O None of the above.
(8) Which tool(s) of differentiation can be used to find y^{\prime} where $y=\frac{6 x^{4}-5 x^{8}}{x^{6}}$?Power ruleProduct ruleQuotient rule
O All of the above

