- (1) True or False: Given two differentiable functions, f and g, the derivative of their product is equal to the product of their derivatives, i.e. (fg)' = f'g'.
 - True
 - False
- (2) Consider the function $y = 3x^5e^x$. If we write y = fg what is an appropriate choice for f and g?

$$\bigcirc f = 3, g = e^x$$

$$\bigcirc f = 3x^5, g = e^x$$

$$\bigcirc f = 3x^5, g = x^5 e^x$$

- None of the above
- (3) Find the derivative of $y = 3x^5e^x$.

$$\bigcirc y' = 15x^4e^x$$

$$\bigcirc y' = 3x^5 + 15x^4e^x$$

$$\bigcirc y' = 3x^5e^x + 15x^4$$

- None of the above
- (4) Which tool(s) of differentiation can be used to find y' where

$$y = (3x+6)(x-5)?$$

- Power rule
- Product rule
- O Both the power rule and the produce rule
- None of the above

- (5) <u>True of False</u>: Given two differentiable functions, f and g, the derivative of their quotient is equal to the quotient of their derivatives, i.e. $\left(\frac{f}{g}\right) = \frac{f'}{g'}$.
 - True
 - False
- (6) Consider the function $y = \frac{6\sqrt{x} 5}{10x^2}$. If we write $y = \frac{f}{g}$ what is an appropriate choice for f and g?
 - $\bigcirc f = 6\sqrt{x}, g = 10x^2$
 - $\bigcirc f = 6\sqrt{x} 5, g = 10x$
 - $f = \sqrt{x} 5, g = 10x^2$
 - None of the above
- (7) Find the derivative of $y = \frac{9x}{x^3 7x + 1}$.
 - $\bigcirc \frac{9}{3x^2 7}$
 - $\bigcirc \frac{-9(2x^3-1)}{(x^3-7x+1)^2}$
 - $\bigcirc \frac{3(12x^3 42x + 3)}{(x^3 7x + 1)^2}$
 - O None of the above.
- (8) Which tool(s) of differentiation can be used to find y' where $y = \frac{6x^4 5x^8}{x^6}$?
 - O Power rule
 - Product rule
 - O Quotient rule
 - All of the above