On Flavors of Factorization in Commutative Rings with Zero Divisors

Ranthony A.C. Edmonds

The Ohio State University MathFest 2019 Cincinnati What is Factorization Theory?

Fundamental Theorem of Arithmetic

FTA: Every integer greater than 1 can be factored uniquely as the product of primes

Unique Factorization

Unique factorization depends on the setting!

Unique Factorization

 $a \in R$ is an **atom** if a = bc implies that, (1) b or c is a unit, (2) either $a \mid b$ and $b \mid a$ or $a \mid c$ and $c \mid a$, i.e. a is **associated** to b or a is **associated** to c.

ex.
$$X + 1 = \frac{1}{2}(2X + 2)$$
 in $\mathbb{R}[X]$ but $X + 1 \sim 2x + 2$

unique factorization domain (UFD): every element can be factored uniquely into the product of atoms up to order and associates

ex. $\mathbb{Z}, \mathbb{Z}[i], \mathbb{R}, \mathbb{C}$

Unique Factorization in **R**[**X**]

Theorem: *R* is a UFD if and only if R[X] is a UFD

ex. $\mathbb{Z}[X], (\mathbb{Z}[i])[X], \mathbb{R}[X], \mathbb{C}[X], \mathbb{C}[X, Y, Z].$

Consider the ring: $|\mathbb{R} + X\mathbb{C}[X]|$

 $\underbrace{ \inf_{\bullet} \sqrt{3} + X(2iX^3 + i) }_{\bullet X} \\ \bullet \left(\frac{1+i}{2} \right) X$

<u>out</u> • 3i

• 1 + *i*

factorization of X^2 in $\mathbb{R} + X\mathbb{C}[X]$ $X^2 = X \cdot X$ = (iX)(-iX) $= (1+i)X\left(\frac{1-i}{2}\right)X$ $= (2+i)X\left(\frac{2-i}{5}\right)X$ X^2 is divisible by $\{(r+i)X\}$

half-factorial domain (HFD): every factorization of a nonzero nonunit element into atoms has the same length

examples: $\mathbb{R} + X\mathbb{C}[X]$, $\mathbb{Z}\sqrt{-5}$, any UFD

Consider the ring $\mathbb{R}[X^2, X^3]$,

$$X^{6} = \underbrace{X^{2} \cdot X^{2} \cdot X^{2}}_{\text{length 3}} = \underbrace{X^{3} \cdot X^{3}}_{\text{length 2}}$$

 X^6 has two nonassociate factorizations into atoms of different lengths!

finite factorization domain (FFD): every factorization of a nonzero nonunit element into atoms has finite length

examples: $\mathbb{R}[X^2, X^3]$, $\mathbb{Z}\sqrt{-5}$, any UFD, some HFDs

(1990 Anderson et all) *Factorization in Integral Domains*

What are Zero Divisors?

Zero Divisors in Commutative Rings

an element $a \in R$ is a **zero divisor** if there is a nonzero element $b \in R$ so that ab = 0

Note: 2, 3 and 4 are zero divisors in $\mathbb{Z}/6\mathbb{Z}$

Some Interesting Examples

Look at factorizations of 3 in $\mathbb{Z}/6\mathbb{Z}$.

3 = 3 $3 = 3 \cdot 3$ $3 = 3 \cdot 3 \cdot 3$ \vdots $3 = 3^{n}$

We have infinite factorizations in a finite ring!

Note: 3 is an **idempotent** element $(e^2 = e)$. $e^2 - e = 0 \Rightarrow e(e - 1) = 0.$

Look at the factorization of *X* in $(\mathbb{Z}/6\mathbb{Z})[X]$,

$$(3X+2)(2X+3) = 6X^2 + 13X + 6 = X$$

Intuitive degree arguments fail!

Some Interesting Examples

Factorizations of powers of X in $(\mathbb{Z}/4\mathbb{Z})[X]$

$$\mathbf{X}^2 = \mathbf{X} \cdot \mathbf{X} = (\mathbf{X} + 2)(\mathbf{X} + 2)$$

$$X^3 = X \cdot X \cdot X = X(X+2)(X+2)$$

$$\mathbf{X}^4 = \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} = (\mathbf{X}^2 + 2)(\mathbf{X}^2 + 2)$$

$$\mathbf{X}^5 = \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} = \mathbf{X}(\mathbf{X}^2 + 2)(\mathbf{X}^2 + 2)$$

Polynomial Rings

Question: If *R* is a unique factorization ring with zero divisors, does R[X] have the unique factorization property?

Not necessarily: $\mathbb{Z}/4\mathbb{Z}$ is a UFR (not a UFD) but $(\mathbb{Z}/4\mathbb{Z})[X]$ is not a UFR

$$\mathbf{X}^2 = \mathbf{X} \cdot \mathbf{X} = (\mathbf{X} + 2)(\mathbf{X} + 2)$$

Working With Zero Divisors

Approach 1: Only worry about the **regular** elements

ex. *R* is **factorial** if every regular element factors uniquely as the product of atoms.

Note: R[X] is factorial if and only if R is a UFD.

Working With Zero Divisors

Approach 2: "weaken" properties from integral domains and then generalize

reduced	$a eq a_1 \cdots \hat{a}_i \cdots a_n$ for any $i \in \{1, \dots, n\}$
strongly reduced	$a eq a_1 \cdots \hat{a_{i_1}} \cdots \hat{a_{i_j}} \cdots a_n$ for any nonempty
	proper subset $\{i_1, \cdots, i_j\} \subsetneq \{1, \ldots, n\}$.

ex. $(1,0) = (2,0)(\frac{1}{2},0)(2,0)(\frac{1}{2},0)$ in $\mathbb{Q} \times \mathbb{Q}$

is reduced but NOT strongly reduced

Note: (1,0) is an idempotent in $\mathbb{Q} \times \mathbb{Q}$

Reduced UFRs

R is a **strongly reduced** (respectively **reduced**) UFR if:

1) R is atomic

2) if $a = a_1 \cdots a_n = b_1 \cdots b_m$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then n = m and after a reordering $a_i \sim b_i$ for $i \in \{1, \ldots, n\}$

ex. $(\mathbb{Z}/6\mathbb{Z})[X]$ is a strongly reduced UFR

Note: the only strongly reduced factorization of 3 is $3\cdot 1$

What are the benefits of "weakening" properties from domains to rings with zero divisors?

Property	UFD	HFD	FFD	idf	BFD	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes
R[X]	yes	no	yes	no	yes	no	no

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes	yes	yes	yes	yes	yes	yes	yes
R[X]	no	no	no	no	no	no	no	no

Types of UFRs

- 1. Fletcher UFR (1969)
- 2. Bouvier-Galovich UFR (1974-1978)
- 3. $(\alpha,\beta)\text{-}\mathsf{UFR}$ (1996)
- 4. Reduced UFR (2003)
- 5. Weak UFR (2011) (ex. (Z/4Z)[X])

Note: Other properties outside of unique factorization have also been investigated.

ex. $\mathbb{Z}/6\mathbb{Z}$ is a reduced UFR and $(\mathbb{Z}/6\mathbb{Z})[X]$ is a reduced UFR

ex. $\mathbb{Z}/4\mathbb{Z}$ is a weak UFR and $(\mathbb{Z}/4\mathbb{Z})[X]$ is a weak UFR

Factorization in monoid rings *R*[*X*, *M*]

"polynomials" in *X* with coefficients in *R* and exponents in *M*

ex. $\mathbb{Z}[X; \mathbb{Z}/2\mathbb{Z}]$ is no longer a domain $(X+1)(X-1) = X^2 - 1 = 1 - 1 = 0$

Edmonds.110@osu.edu www.RanthonyEdmonds.com