On Flayors of Factorization in Commutative Rings with Zero Divisors

Ranthony A.C. Edmonds

The Ohio State University
MathFest 2019 Cincinnati

$$
\begin{aligned}
& \text { What is } \\
& \text { Factorization } \\
& \text { Theory? }
\end{aligned}
$$

Fundamental Theorem of Arithmetic

FTA: Every integer greater than 1 can be factored uniquely as the product of primes

Unique Factorization

Unique factorization depends on the setting!

Unique Factorization

$a \in R$ is an atom if $a=b c$ implies that,
(1) b or c is a unit,
(2) either $a \mid b$ and $b \mid a$ or $a \mid c$ and $c \mid a$, i.e. a is associated to b or a is associated to c.
ex. $X+1=\frac{1}{2}(2 X+2)$ in $\mathbb{R}[X]$ but $X+1 \sim 2 x+2$ unique factorization domain (UFD): every element can be factored uniquely into the product of atoms up to order and associates
ex. $\mathbb{Z}, \mathbb{Z}[i], \mathbb{R}, \mathbb{C}$

Unique Factorization in $R[X]$

Theorem: R is a UFD if and only if $R[X]$ is a UFD
ex. $\mathbb{Z}[X],(\mathbb{Z}[i])[X], \mathbb{R}[X], \mathbb{C}[X], \mathbb{C}[X, Y, Z]$.

Non-Unique Factorization

Consider the ring: $\mathbb{R}+X \mathbb{C}[X]$
in

- $\sqrt{3}+X\left(2 i X^{3}+i\right)$
- X
- $\left(\frac{1+i}{2}\right) X$
out
- 3i
- $1+i$
factorization of X^{2} in
$\mathbb{R}+X \mathbb{C}[X]$

$$
\begin{aligned}
X^{2} & =X \cdot X \\
& =(i X)(-i X)
\end{aligned}
$$

$$
=(1+i) X\left(\frac{1-i}{2}\right) X
$$

$$
=\underbrace{(2+i) X\left(\frac{2-i}{5}\right)} x
$$

X^{2} is divisible by $\{(r+i) X\}$

Non-unique Factorization

half-factorial domain (HFD): every factorization of a nonzero nonunit element into atoms has the same length
examples: $\mathbb{R}+X \mathbb{C}[X], \mathbb{Z} \sqrt{-5}$, any UFD

Non-unique Factorization

Consider the ring $\mathbb{R}\left[X^{2}, X^{3}\right]$,

$X^{6}=\underbrace{X^{2} \cdot X^{2} \cdot X^{2}}_{\text {length } 3}=\underbrace{X^{3} \cdot X^{3}}_{\text {length } 2}$
X^{6} has two nonassociate factorizations into atoms of different lengths!
finite factorization domain (FFD): every factorization of a nonzero nonunit element into atoms has finite length
examples: $\mathbb{R}\left[X^{2}, X^{3}\right], \mathbb{Z} \sqrt{-5}$, any UFD, some HFDs

Non-unique Factorization

(1990 Anderson et all) Factorization in Integral Domains

What are Zero Divisors?

Zero Divisors in Commutative Rings

 an element $a \in R$ is a zero divisor if there is a nonzero element $b \in R$ so that $a b=0$| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

Note: 2, 3 and 4 are zero divisors in $\mathbb{Z} / 6 \mathbb{Z}$

Some Interesting Examples

Look at factorizations of 3 in $\mathbb{Z} / 6 \mathbb{Z}$.
$3=3$
$3=3 \cdot 3$
$3=3 \cdot 3 \cdot 3$
!
$3=3^{n}$
We have infinite factorizations in a finite ring!
Note: 3 is an idempotent element ($e^{2}=e$).

$$
e^{2}-e=0 \Rightarrow e(e-1)=0
$$

Some Interesting Examples

Look at the factorization of X in $(\mathbb{Z} / 6 \mathbb{Z})[X]$,

$$
(3 X+2)(2 X+3)=6 X^{2}+13 X+6=X
$$

Intuitive degree arguments fail!

Some Interesting Examples

Factorizations of powers of X in $(\mathbb{Z} / 4 \mathbb{Z})[X]$
$X^{2}=X \cdot X=(X+2)(X+2)$
$X^{3}=X \cdot X \cdot X=X(X+2)(X+2)$
$X^{4}=X \cdot X \cdot X \cdot X=\left(X^{2}+2\right)\left(X^{2}+2\right)$
$X^{5}=X \cdot X \cdot X \cdot X \cdot X=X\left(X^{2}+2\right)\left(X^{2}+2\right)$

Polynomial Rings

Question: If R is a unique factorization ring with zero divisors, does $R[X]$ have the unique factorization property?

Not necessarily: $\mathbb{Z} / 4 \mathbb{Z}$ is a UFR (not a UFD) but $(\mathbb{Z} / 4 \mathbb{Z})[X]$ is not a UFR

$$
X^{2}=X \cdot X=(X+2)(X+2)
$$

Approach 1: Only worry about the regular elements
ex. R is factorial if every regular element factors uniquely as the product of atoms.

Note: $R[X]$ is factorial if and only if R is a UFD.

Approach 2: "weaken" properties from integral domains and then generalize

reduced	$a \neq a_{1} \cdots \hat{a_{i}} \cdots a_{n}$ for any $i \in\{1, \ldots, n\}$
strongly reduced	$a \neq a_{1} \cdots \hat{a_{1}} \cdots \hat{a_{j}} \cdots a_{n}$ for any nonempty proper subset $\left\{i_{1}, \cdots, i_{j}\right\} \subsetneq\{1, \ldots, n\}$.

ex. $(1,0)=(2,0)\left(\frac{1}{2}, 0\right)(2,0)\left(\frac{1}{2}, 0\right)$ in $\mathbb{Q} \times \mathbb{Q}$
is reduced but NOT strongly reduced
Note: $(1,0)$ is an idempotent in $\mathbb{Q} \times \mathbb{Q}$

Reduced UFRs

R is a strongly reduced (respectively reduced) UFR if:

1) R is atomic
2) if $a=a_{1} \cdots a_{n}=b_{1} \cdots b_{m}$ are two strongly reduced (respectively reduced) factorizations of a nonunit $a \in R$, then $n=m$ and after a reordering $a_{i} \sim b_{i}$ for $i \in\{1, \ldots, n\}$
ex. $(\mathbb{Z} / 6 \mathbb{Z})[X]$ is a strongly reduced UFR
Note: the only strongly reduced factorization of 3 is $3 \cdot 1$

What are the benefits of "weakening" properties from domains to rings with zero divisors?

Property	UFD	HFD	FFD	idf	BFD	ACCP	atomic
R	yes						
$R[X]$	yes	no	yes	no	yes	no	no

Property	UFR	HFR	FFR	WFFR	idf	BFR	ACCP	atomic
R	yes							
$R[X]$	no							

Types of UFRs

1. Fletcher UFR (1969)
2. Bouvier-Galovich UFR (1974-1978)
3. (α, β)-UFR (1996)
4. Reduced UFR (2003)
5. Weak UFR (2011) (ex. $(\mathbb{Z} / 4 \mathbb{Z})[X])$

Note: Other properties outside of unique factorization have also been investigated.
ex. $\mathbb{Z} / 6 \mathbb{Z}$ is a reduced UFR and $(\mathbb{Z} / 6 \mathbb{Z})[X]$ is a reduced UFR
ex. $\mathbb{Z} / 4 \mathbb{Z}$ is a weak UFR and $(\mathbb{Z} / 4 \mathbb{Z})[X]$ is a weak UFR

Other Settings

Factorization in monoid rings $R[X, M]$
"polynomials" in X with coefficients in R and exponents in M
ex. $\mathbb{Z}[X ; \mathbb{Z} / 2 \mathbb{Z}]$ is no longer a domain
$(X+1)(X-1)=X^{2}-1=1-1=0$

Edmonds.110@osu.edu

 www.RanthonyEdmonds.com