

Short Answer
1.) (5 pts) Find the exact solutions) to the following for all x.
(a) $2 \sin \theta+\sqrt{3}=0$
$2 \sin \theta=-\sqrt{3}$
$\sin \theta=\frac{-\sqrt{3}}{2}$

$$
\begin{array}{r}
\theta=\frac{4 \pi}{3}+2 k \pi, \\
\\
\frac{5 \pi}{3}+2 k \pi
\end{array}
$$

OR $\theta=240^{\circ}+k 360^{\circ}$,

$$
300^{\circ}+k 360^{\circ}
$$

(b) $\cos ^{2} x-5 \cos x=6$

$$
\cos ^{2} x-5 \cos x-6=0
$$

$$
\text { let } y=\cos x
$$

$$
\Rightarrow y^{2}-5 y-6=0
$$

$$
(y-6)(y+1)=0
$$

$$
\Rightarrow y=6 \quad y=-1
$$

$$
\Rightarrow \cos x=6
$$

x ONE

$$
\begin{aligned}
& \tan \left(\sec ^{-1}\left(\frac{5}{3}\right)+\tan ^{-1}\left(\frac{1}{3}\right)\right) \\
& =\frac{\tan \left(\sec ^{-1}\left(\frac{5}{3}\right)\right)+\tan \left(\tan ^{-1}\left(\frac{1}{3}\right)\right)}{1-\tan \left(\sec ^{-1}\left(\frac{5}{3}\right)\right) \tan \left(\tan ^{-1}\left(\frac{1}{3}\right)\right)} \\
& =\frac{\left(\frac{4}{3}\right)+\left(\frac{1}{3}\right)}{1-\left(\frac{4}{3}\right)\left(\frac{1}{3}\right)} \\
& =\frac{\left(\frac{5}{3}\right)}{\left(\frac{9}{9}-\frac{4}{9}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(\frac{5}{3}\right)}{\left(\frac{5}{9}\right)} \\
& =\frac{5}{3} \cdot \frac{9}{5} \\
& =\frac{9}{3} \\
& =3
\end{aligned}
$$

3.) (4 pts.) Let a triangle be given with $a=26 \mathrm{ft}, b=62 \mathrm{ft}$, and $\alpha=23^{\circ}$. Answer the following. (Note: round your answer to parts (a) and (b) the nearest integer)
(a) Find β.
(b) Give the angle measurements for each possible triangle based on your choices) of β above.
(a)

$$
\begin{aligned}
& \frac{\sin \beta}{62}=\frac{\sin \left(23^{\circ}\right)}{26} \\
& \begin{aligned}
\sin \beta & =\frac{62 \sin \left(23^{\circ}\right)}{26} \\
\beta & =\sin ^{-1}\left(\frac{62 \sin \left(23^{\circ}\right)}{26}\right) \\
& =68.7082 \\
& \approx 69^{\circ}
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { Triangle } 1 \\
& \alpha=23^{\circ} \\
& \beta=69^{\circ} \\
& \gamma=88^{\circ}
\end{aligned}
$$

4.) (4 pts.) Find the length of c in the triangle given $b=11 \mathrm{~m}, \alpha=56^{\circ}$, and $\beta=112^{\circ}$.

Find r

$$
\begin{aligned}
\gamma & =180^{\circ}-(\alpha+\beta) \\
& =180^{\circ}-\left(56^{\circ}+112^{\circ}\right) \\
& =180^{\circ}-168^{\circ} \\
& =12^{\circ}
\end{aligned}
$$

Find C

$$
\frac{\sin \gamma}{c}=\frac{\sin \beta}{b}
$$

$$
\frac{\sin \left(12^{\circ}\right)}{c}=\frac{\sin \left(112^{\circ}\right)}{11}
$$

$$
c=\frac{11 \sin \left(12^{\circ}\right)}{\sin \left(112^{\circ}\right)}
$$

$$
\begin{aligned}
c & =2.46664 \\
& \approx 2 \mathrm{~m}
\end{aligned}
$$

5.) Which of the following triangles can be solved using the Law of Sines?
(a) $\alpha=39^{\circ}, \beta=63^{\circ}, \gamma=78^{\circ} \quad$ AAA X
(b) $b=139 \mathrm{yd}, a=17 \mathrm{yd}, \gamma=42^{\circ}$
sSA (no side opp angle) X
(c) $\alpha=105^{\circ}, \gamma=72^{\circ}, c=15 \mathrm{~mm}$

ABS
(d) $b=7$ in, $a=5$ in, $\alpha=31^{\circ}$

SSA (side opp angle)
6.) Which of the following equations represents the following graph?
(a) $y=\sin ^{-1} x$
(b) $y=\cos ^{-1} x$
(c) $y=\tan ^{-1} x$
(d) $y=\csc ^{-1} x$
(C) $y=\sec ^{-1} x$
(f) $y=\cot ^{-1} x$

7.) Evaluate $\theta=\csc ^{-1}(2)$.
(a) $\theta=0^{\circ}$
(b) $\theta=30^{\circ}$

$$
\csc ^{-1}(2)=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}
$$

(c) $\theta=45^{\circ}$
(d) $\theta=60^{\circ}$
(e) $\theta=90^{\circ}$

