Quiz 9 (20 pts.)
Name:

Short Answer
1.) (3 pts) To estimate the length $C B$ of the lake in the figure, a surveyor measures $A B$ and $A C$ to be 89 m and 74 m respectively and $\angle C A B$ to be 95°. Find the approximate length of the lake to the nearest meter.

$$
\begin{aligned}
(C B)^{2} & =(A C)^{2}+(A B)^{2}-2(A C)(A B) \cos (\angle C A B) \\
& =(89)^{2}+(74)^{2}-2(89)(74) \cos \left(95^{\circ}\right) \\
& =7921+5476-13172 \cos \left(95^{\circ}\right) \\
& =13397-13172 \cos 95^{\circ} \\
& =14545.01544
\end{aligned}
$$

$$
\Rightarrow C B=\sqrt{14545.01544}=120.6027 \approx 121 \mathrm{~m}
$$

2.) (4 pts.) The figure below represents a four-sided plot of land in a new delevopment that sells for $\$ 5.20$ per square foot. Find the price of this plot to the nearest thousand dollars. (Hint: Draw a diagonal that divides the plot into two triangles.)
area of T_{1}

$$
\begin{aligned}
A_{1} & =\frac{1}{2}(84)(170) \sin \left(107.2^{\circ}\right) \\
& =\frac{1}{2}(14280) \sin \left(107.2^{\circ}\right) \\
& =(7140) \sin \left(107.2^{\circ}\right) \\
& =6820.6875
\end{aligned}
$$

area of T_{2}

$$
\begin{aligned}
A_{2} & =\frac{1}{2}(210)(123) \sin \left(73.3^{\circ}\right) \\
& =(12915) \sin \left(73.3^{\circ}\right) \\
& =12370.2775
\end{aligned} \Rightarrow \begin{aligned}
P & =(\$ 5.20)(19190.965) \\
& =99793.01811 \\
& \approx \$ 100.000
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow A & =A_{1}+A_{2} \\
& =6820.6875+12370.2775 \\
& =19190.965 \mathrm{fH}^{2} \\
\Rightarrow D & =(\$ 5.20)(19190.965) \\
& =99793.01811 \\
& \approx \$ 100,000
\end{aligned}
$$

3.) (3 pts.) Find the area of triangle with sides $a=4.0 \mathrm{in}, b=6.0 \mathrm{in}$, and $c=8.0 \mathrm{in}$ to the nearest decimal place.

Heron's Formula: $A=\sqrt{s(s-a)(s-b)(s-c)}$ with $s=\frac{a+b+c}{2}$

$$
\begin{aligned}
S & =\frac{4+6+8}{2}=\frac{18}{2}=9 \\
A & =\sqrt{9(9-4)(9-6)(9-8)} \\
& =\sqrt{9(5)(3)(1)} \\
& =\sqrt{135} \\
& =11.61895 \\
& \approx 11.6 \mathrm{in}^{2}
\end{aligned}
$$

4.) (3 pts.) Let $A=(-9,-1)$ and $B=(5,-17)$.
(a) Represent the geometric vector $\overrightarrow{A B}$ as a standard vector.

$$
\begin{aligned}
\overrightarrow{A B} & =\langle 5-(-9),-17-(-1)\rangle \\
& =\langle 5+9,-17+1\rangle \\
& =\langle 14,-16\rangle
\end{aligned}
$$

(b) Find the magnitude of $\mathbf{v}=\langle a, b\rangle$

$$
\begin{aligned}
|v| & =\sqrt{(14)^{2}+(-16)^{2}} \\
& =\sqrt{196+256} \\
& =\sqrt{452}
\end{aligned}
$$

≈ 21.26029
5.) (3 pts.) Given the diagram below, find the scalar components a and b of vector $\mathbf{w}=\langle a, b\rangle$.

$$
\left.\begin{array}{rl}
& \cos \left(78^{\circ}\right)
\end{array} \begin{array}{rl}
& \frac{a}{11} \\
\Rightarrow 11 \cos \left(78^{\circ}\right) & =a \\
2.287 & =a \\
\sin \left(78^{\circ}\right) & =\frac{b}{11} \\
\Rightarrow 11 \sin \left(78^{\circ}\right) & =b \\
& 10.7596
\end{array}\right)=b
$$

$$
\Rightarrow w=\langle 2.3,10.8\rangle
$$

6.) (4 pts.) A plot of land was surveyed, with the resulting information shown in the figure. Find the length of $B C$.
strategy: (1) Find $A B$ using Law of Sines
(2) Find $A C$ using Law of Sines (2) Find $B C$ using law of ${ }_{r}^{l}$ sines

$$
\begin{aligned}
(1) & \frac{\sin \left(41^{\circ}\right)}{A B}=\frac{\sin \left(37^{\circ}\right)}{320} \\
\Rightarrow & \frac{320 \sin \left(41^{\circ}\right)}{\sin \left(37^{\circ}\right)}=A B \\
\Rightarrow & 348.843=A B \\
\Rightarrow & \frac{\sin \left(36^{\circ}\right)}{320}=\frac{\sin \left(41^{\circ}+16^{\circ}\right)}{A C} \\
\Rightarrow & \frac{320 \sin \left(57^{\circ}\right)}{\sin \left(36^{\circ}\right)}=A C \\
\Rightarrow & 456.586=A C
\end{aligned}
$$

$$
\begin{aligned}
& \left(3(B C)^{2}\right. \\
& =(A C)^{2}+(A B)^{2}-2(A C)(A B) \cos (\angle C A B) \\
& =(456.586)^{2}+(348.843)^{2}-2(456.586)(348.843) \\
& =22463.0068 \\
& \Rightarrow B C \\
& \Rightarrow
\end{aligned} \begin{array}{r}
22463.0068 \\
= \\
\\
\approx 149.8766
\end{array}
$$

