Video Quiz 10

Instructions: Show all of your work for full credit and submit by 3:30pm Mon. April 24, 2017.

1. (2 pts.) Plot the following points in the polar coordinate system below.

$$
A=\left(5,-\frac{\pi}{6}\right), \quad B=\left(8, \frac{3 \pi}{4}\right), \quad C=\left(-2, \frac{\pi}{2}\right), \quad D=\left(-4,-\frac{\pi}{3}\right)
$$

2. (2 pts.) Change the polar coordinates to rectangular coordinates.
(a) $A=(5, \pi)$
(b) $B=\left(-3,120^{\circ}\right)$

$$
\begin{array}{rlrl}
x & =r \cos \theta & y & =r \sin \theta \\
& =5 \cos (\pi) & & =5 \sin (\pi) \\
& =5(-1) & & =5(0) \\
& =-5 & & =0 \\
& \Rightarrow A=(-5,0)
\end{array}
$$

$$
\begin{aligned}
x & =r \cos \theta & & y=r \sin \theta \\
& =-3 \cos \left(120^{\circ}\right) & & =-3 \sin \left(120^{\circ}\right) \\
& =-3\left(\frac{-1}{2}\right) & & =-3\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{3}{2} & & =\frac{-3 \sqrt{3}}{2} \\
\Rightarrow & A & =\left(\frac{3}{2}, \frac{-3 \sqrt{3}}{2}\right) &
\end{aligned}
$$

$A=$
3. (2 pts.) Convert the rectangular coordinates $(-4,-4 \sqrt{3})$ to polar coordinates.

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
r^{2} & =(-4)^{2}+(-4 \sqrt{3})^{2} \\
& =16+16 \cdot 3 \\
& =16+48 \\
& =64 \\
\Rightarrow r & = \pm \sqrt{64} \\
\Rightarrow r & =8 \text { or } r=-8
\end{aligned}
$$

$$
\tan \theta=\frac{y}{x}
$$

$$
\Rightarrow A=\left(-8,60^{\circ}\right)
$$

or $A=\left(8,-120^{\circ}\right)$
4. (2 pts.) Change $x^{2}+y^{2}-6 x=0$ from rectangular to polar form.

$$
\begin{aligned}
& x^{2}+y^{2}-6 x=0 \\
& r^{2}-6 r \cos \theta=0 \\
& r(r-6 \cos \theta)=0 \\
& \Rightarrow r=0 \quad r-6 \cos \theta=0 \\
& r=6 \cos \theta
\end{aligned}
$$

5. (2 pts.) Change $r=8 \cos \theta$ from polar to rectangular form.

$$
\begin{aligned}
& r=8 \cos \theta \\
\rightarrow & r^{2}=8 r \cos \theta \\
& x^{2}+y^{2}=8 x \\
& x^{2}+y^{2}-8 x=0
\end{aligned}
$$

