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Introduction



In mathematics, the term ‘unique’ is used to
indicate that there is exactly one object that

exists with a certain property.

1



About Me



SCAPA

School for the Creative and Performing Arts

• Attended from 4th to 8th grade

• Creative Writing major

• Band minor (clarinet)

• Took electives in art, music, dance, drama, etc
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PAUL LAURENCE DUNBAR

Math, Science, and Technology Center (MSTC)

• 55/2500 incoming high school freshmen selected each year

• Dismissed after year 1!

• Discouraged me from pursuing a STEM career

Writing

• Worked on school’s literary magazine

• Went to a summer journalism camp at Western Kentucky
University

• Worked for school newspaper The Lamplighter as photo editor
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UNIVERSITY OF KENTUCKY

Freshman Year

• Started as Biology Pre-Med Major

Sophomore Year

• Changed my major to English Pre-Med

• Began leading math study groups twice a week on campus

Junior Year

• Added an African-American Studies minor

• Changed my major to dual degree English and Mathematics

Super Senior Year

• Applied to graduate school for a Master’s in Math Education
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Graduate School



EASTERN KENTUCKY UNIVERSITY

The Plan

• Enrolled in Master’s of Science in Mathematical Sciences
Program (2 years)

• Planned on Applying to Math for America and then PhD
Programs in Math Education

How Did it Get Paid For?

• Full tuition plus a living stipend as a Graduate Assistant

Graduate Teaching Assistant

• Assisted professors in discussion sections, worked in math
tutoring lab, led my own lecture
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EASTERN KENTUCKY UNIVERSITY
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UNIVERSITY OF IOWA

Department of Mathematics

• PhD Programs in Mathematics and Applied Mathematics

• Average Time Length: 5-6 years

• Every PhD student accepted is fully funded as a Graduate
Teaching Assistant (average stipend of $18,264 to $19,133 for
2015-2016 school year)

• Graduate College and National Fellowships are also available

• Common Job Outlooks: Academia and Industry
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UNIVERSITY OF IOWA
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UNIVERSITY OF IOWA

Application Process Required Materials

• Unofficial transcripts

• GRE General Test scores

• Coursework information

• Statement of purpose

• 3 Letters of recommendation

• Resume/CV (optional)

• Deadline: January 15, 2018
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UNIVERSITY OF IOWA

Prospective Student Weekend

• Visit campus and get to know faculty and students in
department

• All expenses paid

• Ask a lot of questions!

• Decision deadline: April 15, 2018
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UNIVERSITY OF IOWA
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UNIVERSITY OF IOWA

What do you do for 5-6 years?

• Year 1: Complete first year sequences

• Take Qualifying Exams the Summer before Year 2 over first
year coursework

• Year 2: Complete second year sequences (look for an advisor)

• Year 3: Upper level coursework

• Pass Qualifying Exam by Winter of Year 3

• Year 4: Complete Coursework

• Pass Comprehensive Exam by Winter of Year 4

• Years 5-6: Work on Writing Dissertation (apply for jobs)
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Research



RESEARCH IN PURE MATHEMATICS
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RESEARCH IN PURE MATHEMATICS
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COMMUTATIVE RING THEORY

Definition
A ring R is a set equipped with two binary operations + and · that
satisfies three sets of axioms.

Axiom 1: R is an abelian group under addition.

• associative: (a+ b) + c = a+ (b + c) for all a, b, c ∈ R

• commutative: a+ b = b + a for all a, b ∈ R

• additive identity: There is an element 0 ∈ R so that
a+ 0 = a for all a ∈ R

• additive inverse: For each a ∈ R there exists an −a ∈ R so
that a+ (−a) = 0
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COMMUTATIVE RING THEORY

Axiom 2: R is a monoid under multiplication

• associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R

• multiplicative identity: There is an element 1 in R such that
a · 1 = a and 1 · a = a for all a ∈ R

Axiom 3: Multiplication in R distributes over addition

• left distributivity: a · (b + c) = a · b + a · c for all a, b, c ∈ R

• right distributivity: (b+ c) · a = b · a+ c · a for all a, b, c ∈ R
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COMMUTATIVE RING THEORY

Example 1

• The integers Z are a ring under the usual addition and
multiplication

• R[X ] is a ring under polynomial addition and multiplication

• ex. Let f (x) = x + 3 and g(x) = 2x + 5 ∈ R[X ] then

f (x) + g(x) = 3x + 8 and f (x) · g(x) = 2x2 + 11x + 15

• The set of even integers 2Z is not a ring, why?
• There is no multiplicative identity element!
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COMMUTATIVE RING THEORY

Properties of Rings

Definition
R is a commutative ring if the multiplication in R is commutative,
that is if a · b = b · a for all a, b ∈ R

Example 2

• The integers Z are a commutative ring, for example 2 · 3 = 3 · 2
• The set of 2 × 2 matrices with real number coefficients is not

a commutative ring

󰀮
1 2
3 4

󰀯
·
󰀮

1 2
0 1

󰀯
=

󰀮
1 4
3 10

󰀯
and

󰀮
1 2
0 1

󰀯
·
󰀮

1 2
3 3

󰀯
=

󰀮
7 8
3 3

󰀯
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COMMUTATIVE RING THEORY

Example 3

• The integers modulo n Z/nZ = {[0], [1], [2], . . . , [n − 1]} are a
commutative ring

• In Z/4Z = {[0], [1], [2], [3]} every integer is identified with its
congruence class based on its remainder when you divide by 4.
So 7 = [3] and 16 = [0]. Which congruence class does 25
belong to?
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COMMUTATIVE RING THEORY

Properties of Rings

Definition
R is an integral domain if a · b = 0 implies that a = 0 or b = 0.

Example 3

• Solve 2x = 0 for x ∈ Z

• Solve 2x3 + 5x2 + 6x = 0 with 2x3 + 5x2 + 6x ∈ R[X ]

0 = x3 + 5x2 + 6x

= x(x2 + 5x + 6)

= x(x + 2)(x + 3)

Then x = 0 or x + 2 = 0 or x + 3 = 0 so x = 0,−2, or −3.
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COMMUTATIVE RING THEORY

Properties of Rings

Definition
An element a ∈ R , is called a zero divisor if there exists a nonzero
element b so that a · b = 0.

Example

• Solve 2x = 0 and

• Solve 2x = 2y for
x , y ∈ Z/4Z

· [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

• 2 is a zero divisor in Z/4Z
• 2 · 0 = 2 · 0; 2 · 1 = 2 · 1; 2 · 1 = 2 · 3 but 1 ∕= 3! (no cancellation)
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What is Factorization Theory?
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INTRODUCTION TO FACTORIZATION THEORY
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UNIQUE FACTORIZATION

Definition
An element a of a ring R is a unit if there exists a b ∈ R so that
ab = 1.

Example

• 2 is a unit in R

• 2 is not a unit in Z

Definition
A unique factorization domain (UFD) is an integral domain R

where every non-zero non-unit element can be written as a product
of irreducible elements uniquely up to order and units

Example

• The integers Z are a UFD; ex. 70 = 2 · 5 · 7
23



UNIQUE FACTORIZATION

Unique Factorization is the most ideal factorization property a ring
can have!

In a UFD...

• If x = p1 · p2 · · · pn is a factorization of x into irreducibles and
x = q1 · q2 · · · qm is another factorization of x into irreducibles
then n = m and after a reordering the pi and qj only differ by
a unit

• There is only one way to factor any nonzero non-unit element
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FACTORIZATION IN INTEGRAL DOMAINS

Definition
An integral domain R is atomic if each nonzero non-unit can be
written as the finite product of atoms, i.e. irreducible elements.

Definition
An integral domain satisfies ACCP , the ascending chain
condition on principal ideals, if there does not exists an infinitely
strictly ascending chain of principal ideals in R .

Definition
An integral domain is a bounded factorization domain (BFR) if
R is atomic and there exists a bound on the length of factorizations
into products of irreducibles for every nonzero non-unit of R
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Example

• R[X 2,X 3] is a bounded factorization domain

Definition
An integral domain R is a half-factorial domain (HFD) if R is
atomic and each factorization of a nonzero non-unit of R into a
product of irreducibles has the same length

Example

• In R[X 2,X 3], X 6 = X 2 · X 2 · X 2 = X 3 · X 3 is not a HFD

Definition
An integral domain is a finite factorization domain (FFD) if every
nonzero non-unit has a finite number of factorizations up to order
and associates.
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FACTORIZATION IN INTEGRAL DOMAINS

HFD

󴉎󴍖▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼

UFD 󴉗󴍟

󴉠󴍨󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮

󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮

󴉎󴍖▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼ FFD

󴈷󴌿

󴉗󴍟 BFD 󴉗󴍟 ACCP 󴉗󴍟 atomic

idf -domain
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FACTORIZATION IN COMMUTATIVE RINGS WITH ZERO
DIVISORS

The theory from integral domains generalizes to commutative rings
with zero divisors.

HFR

󴉍󴍕
❑❑

❑❑
❑❑

❑❑
❑

❑❑
❑❑

❑❑
❑❑

❑

UFR 󴉗󴍟

󴉡󴍩󴜰󴜰󴜰󴜰󴜰󴜰󴜰󴜰󴜰

󴜰󴜰󴜰󴜰󴜰󴜰󴜰󴜰󴜰

󴉃󴍋
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

FFR

󴈷󴌿

󴉗󴍟 BFR 󴉗󴍟 ACCP 󴉗󴍟 atomic

WFFR

󴈷󴌿
idf -ring
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MY RESEARCH

Thesis Title
“Factorization in Polynomial Rings with Zero Divisors"
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FACTORIZATION IN POLYNOMIAL RINGS

HFD

󴉎󴍖▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼

UFD 󴉗󴍟

󴉠󴍨󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮

󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮󴜮

󴉎󴍖▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼ FFD

󴈷󴌿

󴉗󴍟 BFD 󴉗󴍟 ACCP 󴉗󴍟 atomic

idf -domain

Property UFD HFD FFD idf-domain BFD ACCP atomic
R yes yes yes yes yes yes yes

R[X] yes no yes no yes no no
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FACTORIZATION IN POLYNOMIAL RINGS

HFR

󴉍󴍕
❑❑

❑❑
❑❑

❑❑
❑

❑❑
❑❑

❑❑
❑❑

❑
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✽✽
✽✽

✽✽
✽✽

✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

FFR

󴈷󴌿

󴉗󴍟 BFR 󴉗󴍟 ACCP 󴉗󴍟 atomic

WFFR

󴈷󴌿
idf -ring

Property UFR HFR FFR WFFR idf BFR ACCP atomic
R yes yes yes yes yes yes yes yes

R[X] no no no no no no no no
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FACTORIZATION IN POLYNOMIAL RINGS

Theorem
For a commutative ring R the following are equivalent:

1. X is irreducible in R[X ]

2. X is indecomposable in R[X ]

3. R is indecomposable
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FACTORIZATION IN POLYNOMIAL RINGS

Theorem
Let R be a commutative ring. Then X is a product of n atoms if
and only if R is a direct product of n indecomposable rings.

Corollary
When X is a finite product of atoms, the factorization is unique
up to order and associates.
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FACTORING POWERS OF INDETERMINATES

Question
When does X n have unique factorization?

Example
X n does not have unique factorization in Z4[X ],

• X 2 = X · X = (X + 2)(X + 2)

• X 3 = X · X · X = X (X + 2)(X + 2)

• X 4 = X · X · X · X = (X 2 + 2)(X 2 + 2)

• X 5 = X · X · X · X · X = X (X 2 + 2)(X 2 + 2)
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FACTORING POWERS OF INDETERMINATES

Let L(X n) and l(X n) represent the longest and shortest lengths of a
factorization of X n into atoms in Z4[X ] and ρ(X n) = L(X n)/l(X n)

Theorem

In Z4[x ], L(X n) = l(X n) if n = 1 and for n > 1 L(X n) = n,

l(X n) =

󰁆
󰁊

󰁈
2 if n is even

3 if n is odd
and ρ(X n) =

󰁆
󰁊

󰁈
n/2 if n is even

n/3 if n is odd
.

How do we prove this?
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CHARACTERIZING UNIQUE FACTORIZATION RINGS

Some Types of Unique Factorization Rings

• Bouvier-Galovich Unique Factorization Ring

• Fletcher Unique Factorization Ring

36



PROGRESS

HFR

󴉌󴍔
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■

UFR 󴉗󴍟

󴉡󴍩󴜱󴜱󴜱󴜱󴜱󴜱󴜱󴜱󴜱

󴜱󴜱󴜱󴜱󴜱󴜱󴜱󴜱󴜱

󴉄󴍌
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

FFR

󴈷󴌿

󴉗󴍟 BFR 󴉗󴍟 ACCP 󴉗󴍟 atomic

WFFR

󴈷󴌿
idf -ring
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IMPLICATIONS
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Jobs



JOBS

Academia? Industry? Something Else Entirely?
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JOBS

Sources

• www.mathjobs.org

• eims.ams.org/jobs

• higheredjobs.com

• Society for Industrial and Applied Mathematics (SIAM)
www.siam.org

Industry Examples

• Financial and Insurance Sector

• Security (Department of Defense (DoD), National Security
Agency (NSA))

• Data Analysis, Modeling
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JOBS

Academic Examples

• Tenure-track professor (Research University)
• ex. University of Iowa
• ex. Iowa State University

• Tenure-track professor (Liberal Arts College or Mid-Tier
Research University)

• ex. William Penn University
• ex. Grinnell College
• ex. Drake University
• ex. University of Northern Iowa

• Community College Professor

• Temporary Positions (Post-docs, Visiting Professors, Adjuncts,
Lecturers)
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LONG TERM

Academic

• Spring 2019: Graduation from University of Iowa

• Post-doc (2-3 years)

• Professor at Liberal Arts College or Mid-Tier Research
University

• Long Term Goal: Administration

Community

• Non-Profit Work

• Curriculum Development for Vocational Mathematics and/or
College-Readiness
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Conclusion



TAKE AWAYS

Things to Take Away

• There is no ‘right’ way to achieve your goals

• Consider graduate school in mathematics

• Pure and Applied Math are two sides to the same coin

• Research can be very exciting

• There are many career options with a degree in mathematics

• Intangible skills are invaluable

• Mentors and a support team are important

• Understand what makes you unique
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Questions?

43



CONTACT

Email
Ranthony-Edmonds@uiowa.edu

Personal Website
www.RanthonyEdmonds.com

Slides
www.RanthonyEdmonds.com /conferences-and-presentations.html
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